Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2023, Volume 87, Issue 1, Pages 1–28
DOI: https://doi.org/10.4213/im9246e
(Mi im9246)
 

This article is cited in 3 scientific papers (total in 3 papers)

Framed motivic $\Gamma$-spaces

G. A. Garkushaa, I. A. Paninbc, P. Østværdc

a Department of Mathematics, Swansea University, United Kingdom
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
c Department of Mathematics, University of Oslo, Oslo, Norway
d Dipartimento di Matematica, Università degli Studi di Milano, Milano, Italy
References:
Abstract: We combine several mini miracles to achieve an elementary understanding of infinite loop spaces and very effective spectra in the algebro-geometric setting of motivic homotopy theory. Our approach combines $\Gamma$-spaces and Voevodsky's framed correspondences into the concept of framed motivic $\Gamma$-spaces; these are continuous or enriched functors of two variables that take values in framed motivic spaces. We craft proofs of our main results by imposing further axioms on framed motivic $\Gamma$-spaces such as a Segal condition for simplicial Nisnevich sheaves, cancellation, $\mathbb{A}^1$- and $\sigma$-invariance, Nisnevich excision, Suslin contractibility, and grouplikeness. This adds to the discussion in the literature on coexisting points of view on the $\mathbb{A}^1$-homotopy theory of algebraic varieties.
Keywords: framed correspondences, $\Gamma$-spaces, motivic spaces, framed motivic $\Gamma$-spaces, connective and very effective motivic spectra, infinite motivic loop spaces.
Funding agency Grant number
Research Council of Norway 250399
Alexander von Humboldt-Stiftung
Imperial College London
Professor Ingerid Dal and sister Ulrikke Greve Dals prize
Radbound Excellence Initiative
The authors gratefully acknowledge support by the RCN Frontier Research Group Project no. 250399 ‘Motivic Hopf Equations’. Some work on this paper took place at the Institut Mittag–Leffler in Djursholm and the Hausdorff Research Institute for Mathematics in Bonn; we thank both institutions for providing excellent working conditions, hospitality, and support. P. A. Østvær was partially supported by Friedrich Wilhelm Bessel Research Award from the Humboldt Foundation, Nelder Visiting Fellowship from Imperial College London, Professor Ingerid Dal and sister Ulrikke Greve Dals prize for excellent research in the humanities, and a Guest Professorship under the auspices of The Radbound Excellence Initiative.
Received: 11.07.2021
Revised: 19.11.2021
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2023, Volume 87, Issue 1, Pages 3–32
DOI: https://doi.org/10.4213/im9246
Bibliographic databases:
Document Type: Article
UDC: 512.73+514.7+515.14
MSC: 14F42, 55N30, 55P42
Language: English
Original paper language: Russian

In memory of Vladimir Voevodsky

§ 1. Introduction

The category $\Gamma$ of correspondences or multivalued functions on finite sets is of fundamental importance in topology [1]. Following Boardman and Vogt [2], Segal’s work on $\Gamma$-spaces give convenient models for $E_{\infty}$-spaces — these being spaces with multiplications that are unital, associative, and commutative up to higher coherent homotopies — and for infinite loop spaces. Segal applied his ideas to prove the celebrated Barratt–Priddy–Quillen theorem, identifying the group completion of the disjoint union $\bigsqcup_n B\Sigma_n$ of classifying spaces of symmetric groups with the infinite loop space of $\mathbb S$ (the topological sphere). Soon afterwards, Bousfield and Friedlander carried out their homotopical identification of connective spectra and $\Gamma$-space, which was an early striking success in the development of stable homotopy theory [3]. Moreover, $\Gamma$-spaces have the advantage of being simple to define, as well as being intrinsically tied to $K$-theory and topological Hochschild homology [4].

In this paper, we introduce the concept of framed motivic $\Gamma$-spaces together with a few axioms. The main purpose of our set-up is to advance our practical understanding of infinite loop spaces along with new viewpoints on connective and very effective spectra in the algebro-geometric setting of ${\mathbb A}^1$-homotopy theory [5], [6]. Voevodsky [7] envisioned this new direction of development in his work on framed correspondences in motivic homotopy theory.

Working over a field $k$, our approach combines Segal’s category $\Gamma$ with Voevodsky’s symmetric monoidal category $\mathrm{Sm}/k_+$ of framed correspondences of level zero [7], which is a slight enlargement of $\mathrm{Sm}/k$, the category of smooth separated schemes of finite type over $\operatorname{Spec}(k)$.

Recall from [8] that a framed motivic space is a pointed simplicial Nisnevich sheaf on the category of framed correspondences $\mathrm{Fr}_+(k)$. As noted in § 2, $\mathrm{Sm}/k_+$, the opposite category $\Gamma^{\mathrm{op}}$ of pointed finite sets and the category of framed motivic spaces $\mathcal{M}^{\mathsf{fr}}$, are enriched in the closed symmetric monoidal category of pointed motivic spaces $\mathcal{M}$ [9]. With respect to the said enrichments, we shall consider “continuous functors in two variables” for the monoidal product of $\Gamma^{\mathrm{op}}$ and $\mathrm{Sm}/k_+$ taking values in framed motivic spaces

$$ \begin{equation} \mathcal X \colon \Gamma^{\mathrm{op}} \boxtimes \mathrm{Sm}/k_+ \to \mathcal{M}^{\mathsf{fr}} \end{equation} \tag{1} $$
and call them framed motivic $\Gamma$-spaces (see Defintion 2.1). We should note that there is a canonically induced faithful functor
$$ \begin{equation} \mathcal{M}^{\mathsf{fr}}\to \mathcal{M}, \end{equation} \tag{2} $$
obtained from the composite
$$ \begin{equation} \mathrm{Sm}/k \to \mathrm{Sm}/k_+ \to \mathrm{Fr}_+(k). \end{equation} \tag{3} $$
The definition of framed correspondences, as introduced in [7], employs an algebro-geometric analogue of a framing on the stable normal bundle of a manifold. The corresponding prerequisite will be recalled in (1), (2) and (3) (see § 2).

In our quest to carry over Segal’s programme for $\Gamma$-spaces to $\mathbb{A}^1$-homotopy theory we begin by formulating some homotopical axioms for framed motivic $\Gamma$-spaces. These axioms concern both of the variables $\Gamma^{\mathrm{op}}$ and $\mathrm{Sm}/k_+$ in (1). Informally speaking, the pointed finite sets accounts for the $S^1$-suspension whereas the framed correspondences accounts for the $\mathbb G_m$-suspension in stable motivic homotopy theory. We may and will view $\Gamma^{\mathrm{op}}$ as the full subcategory of pointed finite sets with objects $n_+=\{0,\dots,n\}$, pointed at $0$ for every integer $n\geqslant 0$.

Every $\Gamma$-space gives rise to a simplicial functor and hence an associated $S^1$-spectrum (for details, see Ch. 2 in [4]). Similarly in the motivic setting (see (9)) we show that every $U\in \mathrm{Sm}/k_+$ and $\mathcal X$ as in (1), give rise to a presheaf of $S^1$-spectra $\mathcal X(\mathbb S,U)$. We refer to [10] for a comprehensive introduction to the homotopical algebra of such presheaves. In axioms below we employ the notions of local equivalences for simplicial presheaves (see Ch. 4 in [10]) and stable local equivalences for presheaves of $S^1$-spectra (see Ch. 10 in [10]).

For $n\geqslant 0$ and every finitely generated field extension $K/k$, we write $\widehat{\Delta}^n_{K/k}$ for the semilocalization of the standard algebraic $n$-simplex

$$ \begin{equation*} \Delta^n_K = \operatorname{Spec}\bigl(K[x_0,\dots,x_n]/(x_0+\dots+x_n-1)\bigr) \end{equation*} \notag $$
with closed points $v_{0},\dots,v_n\in \Delta^n_K$ as vertices (see [6], § 3) for the colimit preserving realization functor from simplicial sets to Nisnevich sheaves. We recall that $v_{i}$ is a closed subscheme of $\Delta^n_K$, as defined by $x_{j}=0$, for $j\neq i$, $0\leqslant i\leqslant n$. Following § 2 in [11], we write $\widehat{\Delta}^{\bullet}_{K/k}$ for the corresponding cosimplicial semilocal scheme.

We are now ready to introduce the main objects of study of our paper.

Axiom. A framed motivic $\Gamma$-space $\mathcal X$ is called special if the following conditions (1)–(5) are met.

1. We have $\mathcal X(0_+,U)=\ast=\mathcal X(n_+,\varnothing)$ for all $n\geqslant 0$ and $U\in \mathrm{Sm}/k_+$, while for all $n\geqslant 1$ and non-empty $U\in \mathrm{Sm}/k_+$, the naturally induced morphism

$$ \begin{equation*} \mathcal X(n_+,U) \to \mathcal X(1_+,U) \times \overset{n}{\cdots} \times \mathcal X(1_+,U) \end{equation*} \notag $$
is a local equivalence of pointed motivic spaces.

2. For all $n\geqslant 0$ and $U\in \mathrm{Sm}/k_+$ the framed presheaf of stable homotopy groups

$$ \begin{equation*} V \mapsto \pi^{s}_n\mathcal X(\mathbb S,U)(V) \end{equation*} \notag $$
is ${\mathbb A}^1$-invariant, radditive and $\sigma$-stable (see Remark 1.1).

3. (Cancellation.) Let $\mathbb{G}$ denote the cone of the $1$-section $\mathrm{Spec}(k)\to\mathbb G_m $ in the category $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$. For all $n\geqslant 0$ and $U\in \mathrm{Sm}/k_+$, the canonical morphism

$$ \begin{equation*} \mathcal X(\mathbb S,\mathbb{G}^{\wedge n}\times U) \to \underline{\mathrm{Hom}} (\mathbb{G},\mathcal X(\mathbb S,\mathbb G^{\wedge n+1}\times U)) \end{equation*} \notag $$
is a stable local equivalence

4. (${\mathbb A}^1$-invariance.) For all $U\in \mathrm{Sm}/k_+$, the induced morphism

$$ \begin{equation*} \mathcal X(\mathbb S,U\times\mathbb A^1)\to\mathcal X(\mathbb S,U) \end{equation*} \notag $$
is a naturally induced stable local equivalence.

5. (Nisnevich excision.) For every elementary Nisnevich square

in the category $\mathrm{Sm}/k$
there is a homotopy cartesian square in the stable local model structure.

Moreover, a special framed motivic $\Gamma$-space $\mathcal X$ is called very effective if (6) holds and, and very special, if (7) holds.

6. (Suslin contractibility.) For all $U\in \mathrm{Sm}/k_+$ and any finitely generated field extension $K/k$, the geometric realization of the simplicial $S^1$-spectrum

$$ \begin{equation*} \mathcal X(\mathbb S,\mathbb G\times U)(\widehat{\Delta}^{\bullet}_{K/k}) \end{equation*} \notag $$
is stably equivalent to the trivial spectrum.

7. (Grouplikeness.) For all $U\in \mathrm{Sm}/k_+$, the Nisnevich sheaf $\pi^{\mathsf{nis}}_{0}\mathcal X(1_+,U)$, which is associated with the presheaf

$$ \begin{equation*} V \mapsto \pi_{0}\mathcal X(1_+,U)(V) \end{equation*} \notag $$
of connected components on $\mathrm{Sm}/k$, takes values in abelian groups.

Remark 1.1. The reader will recognize axioms 1 and 7 as sheaf versions of special and very special Segal $\Gamma$-spaces respectively [3], [1]. Axiom 2 makes use of the assumption that $\mathcal X$ is a framed motivic $\Gamma$-space. A framed presheaf $\mathcal F$ is $\sigma$-stable if $\mathcal F(\sigma_{V})=\operatorname{id}_{\mathcal F(V)}$ for all $V\in\mathrm{Sm}/k$. Here, the level $1$ explicit framed correspondence $(\{0\}\times V,{\mathbb A}^1\times V,\operatorname{pr}_{\mathbb A^1}, \operatorname{pr}_{V})\in\mathrm{Fr}_{1}(V,V)$ defines a map $\sigma_{V}\colon V\to V$ in $\mathrm{Fr}_+(k)$ (see § 2 in [8]). A presheaf $\mathcal F$ on $\mathrm{Sm}/k$ is radditive if $\mathcal F(\varnothing)=*$ and $\mathcal F(X_1\sqcup X_2)=\mathcal F(X_1)\times\mathcal F(X_2)$ for all $X_1,X_2\in\mathrm{Sm}/k$. In axiom 3, $\mathbb{G}$ is a simplicial object in $\mathrm{Sm}/k_+$ with smash product $\mathbb G^{\wedge n}$, formed in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ (see Notation 8.1 in [8]). Axioms 2–5 are concerned with presheaves of $S^1$-spectra, as in [10], Part IV. Axiom 6 traces back to Suslin’s work on rationally contractible presheaves in [11] (see also [12], [13]).

Example 1.1. An example of a quintessential special framed motivic $\Gamma$-space is given by

$$ \begin{equation*} (n_+,U) \in \Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+ \mapsto C_*\mathrm{Fr}(-,n_+\otimes U) \in \mathcal{M}^{\mathsf{fr}}. \end{equation*} \notag $$
Here, $\mathrm{Fr}$ refers to stable framed correspondences, and $C_*\mathrm{Fr}(-,X')$, to the simplicial framed functor $X\mapsto \mathrm{Fr}(X\times {\Delta}^{\bullet}_k,X')$ (see [7], [8]). By $K\otimes U$, where $K\in\Gamma^{\mathrm{op}}$ and $U\in\mathrm{Sm}/k$, we mean the coproduct of copies of $U$ indexed by the non-based elements in $K$.

The evaluation functor in (15) associates with every framed motivic $\Gamma$-space $\mathcal X$ an object in the category of framed motivic spectra in the sense of Definition 2.1 in [13]:

$$ \begin{equation*} \mathcal X_{S^1,\mathbb G} \in \mathbf{Sp}^{\mathsf{fr}}_{S^1,\mathbb G}(k). \end{equation*} \notag $$

Recall that the triangulated category of framed bispectra $\mathbf{SH}^{\mathsf{fr}}_{\mathsf{nis}}(k)$, whose objects are those of $\mathbf{Sp}^{\mathsf{fr}}_{S^1,\mathbb G}(k)$, is equivalent to the stable motivic homotopy category $\mathbf{SH}(k)$ via the identity with quasi-inverse equal to the big framed motive functor (see Theorem 2.2 in [13]). The big framed motive functor is closely related to Example 1.1 (for details, we refer to [8], § 12).

For the purposes of this paper, it is not necessary to discuss model structures on framed motivic $\Gamma$-spaces. Our next definition is inspired by Segal’s homotopy category of $\Gamma$-spaces [1].

Definition 1.1. The homotopy category of framed motivic $\Gamma$-spaces is defined as the category

$$ \begin{equation*} \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k) \end{equation*} \notag $$
whose objects are special framed motivic $\Gamma$-spaces and for which the morphisms are given by
$$ \begin{equation*} \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)(\mathcal X,\mathcal Y):= \mathbf{SH}^{\mathsf{fr}}_{\mathsf{nis}}(k)(\mathcal X_{S^1,\mathbb G}, \mathcal Y_{S^1,\mathbb G}). \end{equation*} \notag $$

In § 3, we will discuss how $\mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ is related to the unstable pointed motivic homotopy category $\mathbf{H}(k)$ and to connective motivic spectra $\mathbf{SH}(k)_{\geqslant 0}$ via the commutative (up to equivalence of functors) diagram of adjunctions:

$(4)$
Here, $\mathcal X\in \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ is mapped to its underlying motivic space $\mathcal X (1_+,\mathsf{pt})\in \mathbf{H}(k)$, and to its framed motivic spectrum $\mathcal X_{S^1,\mathbb G}\in\mathbf{SH}(k)_{\geqslant 0}$ under the equivalence between $\mathbf{SH}^{\mathsf{fr}}_{\mathsf{nis}}(k)$ and $\mathbf{SH}(k)$ in [13]. We refer to Remark 3.1 for the definition of $\Gamma\mathbb M_{\mathsf{fr}}$, a version of the big framed motive functor introduced in § 12 of [8].

Theorem 1.1. For every infinite perfect field $k$, there is an equivalence of categories

$$ \begin{equation} \begin{gathered} \, \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k) \xrightarrow{\simeq} \mathbf{SH}(k)_{\geqslant 0}, \\ \mathcal X \mapsto \mathcal X_{S^1,\mathbb G}. \end{gathered} \end{equation} \tag{5} $$
Its quasi-inverse functor $\mathbf{SH}(k)_{\geqslant 0} \xrightarrow{\simeq} \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ maps $\mathcal E \in \mathbf{SH}(k)_{\geqslant 0}$ to an explicitly constructed framed motivic $\Gamma$-space $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}} \in \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$.

Let $\mathbf{SH}^{\mathsf{veff}}(k)$ be the full subcategory of $\mathbf{SH}(k)$ generated under homotopy colimits and extensions by motivic ${\mathbb P}^1$-suspension spectra of smooth schemes. This category is of interest since it gives rise to the very effective slice filtration introduced in [14]. We note $\mathbf{SH}^{\mathsf{veff}}(k)$ is contained in the triangulated category $\mathbf{SH}(k)_{\geqslant 0}$, which is generated under homotopy colimits and extensions by motivic ${\mathbb P}^1$-suspension spectra $\Sigma^{p,q}U_+$ where $p\geqslant q$ and $U\in\mathrm{Sm}/k$, and closed under homotopic colimits and extensions.

We shall study $\mathbf{SH}^{\mathsf{veff}}(k)$ from the point of view of framed motivic $\Gamma$-spaces.

Definition 1.2. The homotopy category of very effective framed motivic $\Gamma$-spaces

$$ \begin{equation*} \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{veffr}}(k) \end{equation*} \notag $$
is the full subcategory of $\mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ comprised of very effective special framed motivic $\Gamma$-spaces.

We will now show that Axiom 6 on Suslin contractibility of special framed motivic $\Gamma$-spaces captures precisely the difference between $\mathbf{SH}^{\mathsf{veff}}(k)$ and $\mathbf{SH}(k)_{\geqslant 0}$.

Theorem 1.2. For every infinite perfect field $k$, there is an equivalence of categories

$$ \begin{equation} \begin{gathered} \, \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{veffr}}(k) \xrightarrow{\simeq} \mathbf{SH}^{\mathsf{veff}}(k), \\ \mathcal X \mapsto \mathcal X_{S^1,\mathbb G}. \end{gathered} \end{equation} \tag{6} $$

Finally, we employ Axiom 7 in our recognition principle for infinite motivic loop spaces.

Theorem 1.3. For every infinite perfect field $k$ and every $\mathcal E\in \mathbf{SH}(k)$, there exists a very special framed motivic $\Gamma$-space $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ and a local equivalence of pointed motivic spaces:

$$ \begin{equation} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,\mathsf{pt})\simeq \Omega^{\infty}_{S^1}\Omega^{\infty}_\mathbb{G}\mathcal E. \end{equation} \tag{7} $$
Moreover, if $\mathcal X$ is a very special framed motivic $\Gamma$-space, then $\mathcal X(1_+,\mathsf{pt})$ is an infinite motivic loop space.

Guide to the paper. For the convenience of the reader we begin § 2 by reviewing background on enriched categories with the aim at introducing framed motivic $\Gamma$-spaces. As prime examples, we discuss the motivic sphere spectrum $\mathbf{1}$, algebraic cobordism $\mathbf{MGL}$, motivic cohomology $\mathbf{MZ}$, and Milnor–Witt motivic cohomology $\widetilde{\mathbf{M}}\mathbf{Z}$. Our main results (Theorems 1.11.3) are formulated in § 3. Finally, in § 4 we record some novel homotopical properties of framed motivic $\Gamma$-spaces.

Throughout the paper, we employ the following notation:

$k$ – infinite perfect field of exponential characteristic $e$;

$\mathsf{pt}$ – the scheme $\mathrm{Spec}(k)$;

$\mathrm{Sm}/k$ – smooth separated schemes of finite type;

$\mathrm{Sm}/k_+$ – framed correspondences of level zero;

$\mathrm{Shv}_{\bullet}(\mathrm{Sm}/k)$ – closed symmetric monoidal category of pointed Nisnevich sheaves;

$\mathcal{M}=\Delta^{\mathrm{op}}\mathrm{Shv}_{\bullet}(\mathrm{Sm}/k)$ – pointed motivic spaces, that is, pointed simplicial Nisnevich sheaves;

$\mathrm{Fr}_+(k)$ – the category of framed Voevodsky correspondences;

$\mathrm{Pre}^{\mathsf{fr}}(k)$ – framed presheaves, a.k.a. presheaves of sets on $\mathrm{Fr}_+(k)$;

$i\colon \mathrm{Sm}/k\to\mathrm{Fr}_+(k)$ – the composite functor $\mathrm{Sm}/k\to\mathrm{Sm}/k_+\to\mathrm{Fr}_+(k)$;

$S^{s,t}$, $\Omega^{s,t}$, $\Sigma^{s,t}$ – motivic $(s,t)$-sphere, loop space, and suspension;

$\mathbf{S}_{\bullet}$ – pointed simplicial sets.

Our standard convention for motivic spheres is that $S^{2,1}\simeq\mathbb{P}^1\simeq T$ and $S^{1,1}\simeq\mathbb{A}^1\setminus \{0\}$, as in [5].

Our approach in this paper is a homage to Segal’s work on categories and cohomology theories [1]. Along the same line we use minimal machinery to achieve concrete models for infinite motivic loop spaces and motivic spectra with prescribed properties. Based on Voevodsky’s notes [7], the machinery of framed motives is developed in [8]. As an application, explicit computations of infinite motivic loop spaces are given as follows: namely, $\Omega_{\mathbb P^1}^{\infty}\Sigma_{\mathbb P^1}^{\infty}A$, $A\in\mathcal M$, is locally equivalent to the space $C_{\ast}\mathrm{Fr}(A^c)^{\mathrm{gp}}$ (“gp” stands for group completion), where $A^c$ is a projective cofibrant replacement of $A$ (see § 10 in [8]). Based on [8], [15]–[17], a motivic recognition principle for infinite motivic loop spaces using the language of infinity categories is given in [18].

§ 2. Framed motivic $\Gamma$-spaces

We refer to [19] and [20] for the projective motivic model structure on the closed symmetric monoidal category of pointed motivic spaces $\mathcal{M}$. This model structure is combinatorial, proper, simplicial, symmetric monoidal, and weakly finitely generated. Let $\Delta[\,{\bullet}\,]$ be the standard cosimplicial simpicial set $n\mapsto\Delta[n]$. If there is no likelihood of confusion, we sometimes regard it as a cosimplicial smooth scheme, where each $\Delta[n]$ is regarded as the disjoint union $\bigsqcup_{\Delta[n]}\mathsf{pt}$. The simplicial function $\mathrm{Hom}$-object between pointed motivic spaces $A$ and $B$ is given by

$$ \begin{equation*} \mathbf{S}_{\bullet}(A,B)=\mathrm{Hom}_{\mathcal{M}}(A\wedge \Delta[\,{\bullet}\,]_+,B)=\mathrm{Hom}_{\mathcal{M}} \bigl(A,B(\Delta[\,{\bullet}\,]\times-)\bigr). \end{equation*} \notag $$
For every $U\in\mathrm{Sm}/k$, the Yoneda lemma identifies $\mathbf{S}_{\bullet}(U_+,A)$ with the pointed simplicial set of sections $A(U)$.

Recall that $A\in\mathcal{M}$ is finitely presentable if the functor $\mathrm{Hom}_{\mathcal{M}}(A,-)$ preserves directed colimits. For example, the representable pointed motivic space $U_+$ is finitely presentable for every $k$-smooth scheme $U\in \mathrm{Sm}/k$.

A collection $\mathcal C$ of finitely presentable pointed motivic spaces can be enriched in $\mathcal{M}$ by means of the $\mathcal{M}$-enriched $\mathrm{Hom}$-functor:

$$ \begin{equation} \begin{aligned} \, [A,B](X) &:= \underline{\mathrm{Hom}}_{\,\mathcal{M}}(A,B)(X)\,{=}\, \mathbf{S}_{\bullet}(A\wedge X_+,B) \,{=}\,\mathrm{Hom}_{\mathcal{M}} \bigl(A\wedge\Delta[\,{\bullet}\,]_+,B(X\times-)\bigr) \nonumber \\ &\,=\mathrm{Hom}_{\mathcal{M}} \bigl(A,B(X\times\Delta[\,{\bullet}\,]\times-)\bigr), \qquad A,B\in\mathcal C,\quad X\in \mathrm{Sm}/k. \end{aligned} \end{equation} \tag{8} $$
The enriched composition in $\mathcal C$ is inherited from the enriched composition in $\mathcal{M}$. We write $[\mathcal C,\mathcal{M}]$ for the category of $\mathcal{M}$-enriched covariant functors from $\mathcal C$ to $\mathcal{M}$ (refer to [21], § 4, for its projective model structure), in which the weak equivalences and fibrations are defined pointwise.

Voevodsky [7] defined the morphisms in $\mathrm{Sm}/k_+$, by setting

$$ \begin{equation*} \mathrm{Sm}/k_+(X,Y) := \mathrm{Hom}_{\mathrm{Shv}_{\bullet} (\mathrm{Sm}/k)}(X_+,Y_+), \qquad X,Y\in \mathrm{Sm}/k. \end{equation*} \notag $$
In case $X$ is connected we have $\mathrm{Sm}/k_+(X,Y)=\mathrm{Hom}_{\mathrm{Sm}/k}(X,Y)_+$ by Example 2.1 of [7].

Lemma 2.1. With the above notation, the constant simplicial sets

$$ \begin{equation*} [U_+,V_+](X)= \mathrm{Hom}_{\mathcal{M}}\bigl((U\times X)_+,V_+\bigr) = \mathrm{Sm}/k_+(U\times X,V) \end{equation*} \notag $$
are identified, where $U,V,X\in \mathrm{Sm}/k$.

Proof. By definition, we have
$$ \begin{equation*} [U_+,V_+](X)=\underline{\mathrm{Hom}}_{\,\mathcal{M}}(U_+,V_+)(X)= \mathrm{Hom}_{\mathcal{M}}((U\times X)_+,V_+). \end{equation*} \notag $$
It is evident that $\mathrm{Hom}_{\mathcal{M}}((U\times X)_+,V_+)= \mathrm{Sm}/k_+(U\times X,V)$. This proves the lemma.

Remark 2.1. In fact, $\mathrm{Sm}/k_+(-,V)$, $V\in \mathrm{Sm}/k$, is the Nisnevich sheaf associated with the presheaf $U\mapsto\mathrm{Hom}_{\mathrm{Sm}/k}(U,V)\sqcup \mathsf{pt}$.

Our first example is Segal’s category $\Gamma^{\mathrm{op}}$ of pointed finite sets and pointed maps.

Example 2.1. As in § 5 of [8], we view $\Gamma^{\mathrm{op}}$ as a full subcategory of $\mathcal{M}$ by sending $K\in\Gamma^{\mathrm{op}}$ to $(\bigsqcup_{K\setminus\ast} \mathsf{pt})_+$, where the coproduct is indexed by the non-based elements in $K$. This turns $\Gamma^{\mathrm{op}}$ into a symmetric monoidal $\mathcal{M}$-category. Hence, $[\Gamma^{\mathrm{op}},\mathcal{M}]$ is a closed symmetric monoidal category by [22].

We claim that $[\Gamma^{\mathrm{op}},\mathcal{M}]$ can be identified with the category $\Gamma\mathcal{M}$ of covariant functors from $\Gamma^{\mathrm{op}}$ to $\mathcal{M}$, sending $0_+$ to the basepoint $*$ of $\mathcal M$. In this case, $\mathcal C=\bigl\{\bigsqcup_{K\setminus *} \mathsf{pt}\bigm| K\in \Gamma^{\mathrm{op}}\bigr\}$. An $\mathcal{M}$-enriched functor $\mathcal X\in[\Gamma^{\mathrm{op}},\mathcal{M}]$ sends $K\in\Gamma^{\mathrm{op}}$ to $\mathcal X\bigl(\bigsqcup_{K\setminus *} \mathsf{pt}\bigr)\in\mathcal M$, and for $K,L\in\Gamma^{\mathrm{op}}$, there is a morphism

$$ \begin{equation*} \alpha_{K,L} \colon \mathcal X\biggl(\bigsqcup_{K\setminus *} \mathsf{pt}\biggr) \bigwedge_{\mathcal{M}}\biggl[\bigsqcup_{K\setminus *} \mathsf{pt},\bigsqcup_{L\setminus *}\mathsf{pt}\biggr] \to \mathcal X\biggl(\bigsqcup_{L\setminus *}\mathsf{pt}\biggr). \end{equation*} \notag $$
Here, the motivic space $\bigl[\bigsqcup_{K\setminus*}\mathsf{pt}, \bigsqcup_{L\setminus*}\mathsf{pt}\bigr]$ is given by
$$ \begin{equation*} U \mapsto \Gamma^{\mathrm{op}}\biggl(\bigsqcup_{K\times n(U)_+\setminus (*,+)}\mathsf{pt},\bigsqcup_{L\setminus*}\mathsf{pt}\biggr), \end{equation*} \notag $$
where $n(U)$ is the number of connected components of $U \in \mathrm{Sm}/k$, and $n(U)_+ = \{0,1,\dots,n{(U)}\}$. Since $\mathcal X\in[\Gamma^{\mathrm{op}},\mathcal{M}]$ takes values in simplicial sheaves it follows that
$$ \begin{equation*} \mathcal X(K)(U) = \mathcal X(K)(U_1)\times\overset{n(U)}{\cdots} \times\mathcal X(K)(U_{n{(U)}}), \end{equation*} \notag $$
and consequently, we have
$$ \begin{equation*} \alpha_{K,L}(U) = \alpha_{K,L}(U_1)\times\overset{n(U)}{\cdots}\times\alpha_{K,L}(U_{n{(U)}}). \end{equation*} \notag $$

To a morphism $f\colon K\to L$ in $\Gamma^{\mathrm{op}}$ we associate the morphism $\mathcal X\bigl(\bigsqcup_{K\setminus *}\mathsf{pt}\bigr)\to \mathcal X\bigl(\bigsqcup_{L\setminus *}\mathsf{pt}\bigr)$ with $U$-sections

$$ \begin{equation*} \alpha_{K,L}(U_1)(f)\times\overset{n(U)}{\cdots}\times \alpha_{K,L}(U_{n{(U)}})(f). \end{equation*} \notag $$
Clearly, this yields the identification of $[\Gamma^{\mathrm{op}},\mathcal{M}]$ with pointed functors from $\Gamma^{\mathrm{op}}$ to $\mathcal{M}$.

We are passing to the definition of the category of framed motivic spaces $\mathcal{M}^{\mathsf{fr}}$ and to its natural enrichment over $\mathcal{M}$. Let $\mathrm{Fr}_+(k)$ be the category of framed correspondences, as in § 2 of [8]. Let $\mathrm{Pre}^{\mathsf{fr}}(k)$ be the category of framed presheaves, that is, the category of presheaves of sets on $\mathrm{Fr}_+(k)$. Let $i\colon \mathrm{Sm}/k\to\mathrm{Sm}/k_+\to\mathrm{Fr}_+(k)$ be the composite functor. Recall from § 2 of [8] that a framed Nisnevich sheaf on $\mathrm{Sm}/k$ is a framed presheaf such that its restriction to $\mathrm{Sm}/k$ via the functor $i$ is a Nisnevich sheaf. Let $\mathrm{Shv}_\bullet^{\mathsf{fr}}(k)$ denote the category of pointed framed Nisnevich sheaves. The morphisms in this category are just morphisms of pointed framed presheaves. The category of framed motivic spaces $\mathcal M^{\mathsf{fr}}$ is the category of simplicial objects in $\mathrm{Shv}_\bullet^{\mathsf{fr}}(k)$. There is a canonically induced faithful functor $\iota\colon\mathcal{M}^{\mathsf{fr}}\to\mathcal{M}$, obtained from the composite $i\colon\mathrm{Sm}/k\to\mathrm{Sm}/k_+\to\mathrm{Fr}_+(k)$.

Following § 6 of [7], there is a natural pairing $\mathrm{Sm}/k_+ \times \mathrm{Fr}_+(k)\xrightarrow{\otimes} \mathrm{Fr}_+(k)$ taking $(X,Y)$ to $X\times Y$ and $(f,\alpha)$ to $f\times \alpha$. In what follows, this pairing will be used systematically without special mention. We also use it in the natural enrichment of $\mathcal{M}^{\mathsf{fr}}$ over $\mathcal M$.

First, with each framed Nisnevich sheaf $\mathcal F$ and each $X\in \mathrm{Sm}/k_+$ we associate the framed Nisnevich sheaf $\mathcal F(X\times -)$. In detail, given $\alpha\in \mathrm{Fr}_n(U',U)$, we put $\alpha^*\colon \mathcal F(X\times U)\to \mathcal F(X\times U')$ to be $(\operatorname{id}_X\times \alpha)^*$. If $\mathcal F$ is a pointed framed Nisnevich sheaf, then the framed Nisnevich sheaf $\mathcal F(X\times -)$ is also pointed.

Second, every morphism $f\colon X'\to X$ in $\mathrm{Sm}/k_+$ induces a morphism of framed sheaves $f^*\colon \mathcal F(X\times -)\to \mathcal F(X'\times -)$. Namely, if $U\in \mathrm{Fr}_+(k)$, one sets $f^*\colon \mathcal F(X\times U)\to \mathcal F(X'\times U)$ to be $(f\times \operatorname{id}_U)^*$. If $\mathcal F$ is a pointed framed Nisnevich sheaf, then the morphism of framed sheaves $f^*\colon \mathcal F(X\times -)\to \mathcal F(X'\times -)$ is a morphism of pointed framed Nisnevich sheaves.

Finally, similarly to (8), $\mathcal{M}^{\mathsf{fr}}$ is naturally enriched over $\mathcal M$. Namely,

$$ \begin{equation*} {\mathcal{M}}(A,B)(X):=\mathrm{Hom}_{\mathcal{M}^{\mathsf{fr}}} \bigl(A,B(X\times\Delta[\,{\bullet}\,]\times-)\bigr), \qquad A,B\in\mathcal{M}^{\mathsf{fr}}, \quad X\in \mathrm{Sm}/k. \end{equation*} \notag $$
The enriched composition in $\mathcal{M}^{\mathsf{fr}}$ is inherited from the enriched composition in $\mathcal M$.

Our second example is Voevodsky’s category of framed correspondences of level zero.

Example 2.2. We enrich $\mathrm{Sm}/k_+$ in $\mathcal{M}$ by setting

$$ \begin{equation*} [U,V] := \underline{\mathrm{Hom}}_{\,\mathcal{M}}(U_+,V_+),\qquad U,V\in \mathrm{Sm}/k_+. \end{equation*} \notag $$
This turns $\mathrm{Sm}/k_+$ into a symmetric monoidal $\mathcal{M}$-category with tensor products $U\times V\in\mathrm{Sm}/k$. It follows that the category $[\mathrm{Sm}/k_+,\mathcal{M}]$ is a symmetric monoidal $\mathcal{M}$-category (see [22]). Framed correspondences of level zero form the underlying category of the $\mathcal M$-category $\mathrm{Sm}/k_+$. According to Lemma 2.1, the pointed motivic space $[U,V]$ has $Y$-sections are the constant simplicial sets
$$ \begin{equation*} [U,V](Y) = \mathrm{Hom}_{\mathcal M}\bigl((U\times Y)_+,V_+\bigr) = \mathrm{Sm}/k_+(U\times Y,V). \end{equation*} \notag $$
Owing to the $\mathcal{M}$-enrichment, every $\mathcal X\in[\mathrm{Sm}/k_+,\mathcal{M}]$ gives rise to a morphism in $\mathcal{M}$
$$ \begin{equation*} [U,V] \to \underline{\mathrm{Hom}}_{\,\mathcal M} \bigl(\mathcal X(U),\mathcal X(V)\bigr). \end{equation*} \notag $$
On $Y$-sections we obtain a morphism from $[U,V](Y)$ to
$$ \begin{equation*} \begin{aligned} \, \underline{\mathrm{Hom}}_{\,\mathcal M} \bigl(\mathcal X(U),\mathcal X(V)\bigr)(Y) &= \mathbf{S}_{\bullet}\bigl(\mathcal X(U)\wedge Y_+, \mathcal X(V)\bigr) =\mathbf{S}_{\bullet}\bigl(\mathcal X(U), \mathcal X(V)(Y\times-)\bigr) \\ &= \mathrm{Hom}_{\mathcal M}\bigl(\mathcal X(U)\wedge \Delta[\,{\bullet}\,]_+,\mathcal X(V)(Y\times-)\bigr). \end{aligned} \end{equation*} \notag $$

The monoidal product $\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+$ is the $\mathcal{M}$-category with objects $\mathrm{Ob}\Gamma^{\mathrm{op}}\times \mathrm{Ob}\mathrm{Sm}/k_+$ and $\mathcal{M}$-morphisms

$$ \begin{equation*} [(K,A),(L,B)]= [K,L] \times [A,B]. \end{equation*} \notag $$
Note that $\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+$ is a symmetric monoidal $\mathcal{M}$-category.

Definition 2.1. 1) A motivic $\Gamma$-space is an $\mathcal{M}$-enriched functor in two variables $\mathcal X\colon \Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+\to \mathcal{M}$.

2) A framed motivic $\Gamma$-space is an $\mathcal{M}$-enriched functor $\mathcal X\colon \Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+\to \mathcal{M}^{\mathsf{fr}}$.

Remark 2.2. Let $\Gamma^{\mathrm{op}}\times\mathrm{Sm}/k_+$ denote the underlying category of the $\mathcal M$-category $\Gamma^{\mathrm{op}}\boxtimes\mathrm{Sm}/k_+$. Every motivic $\Gamma$-space $\mathcal X\colon \Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+\to\mathcal{M}$ gives rise to a functor $\mathcal X\colon \Gamma^{\mathrm{op}}\times \mathrm{Sm}/k_+\to\mathcal{M}$, denoted by the same letter.

Unravelling the previous definition, a framed motivic $\Gamma$-space is equivalent to giving the following data:

– an $\mathcal M$-functor $\mathcal X\colon \Gamma^{\mathrm{op}} \boxtimes \mathrm{Sm}/k_+\to\mathcal{M}$;

– a functor $\mathcal X'\colon \Gamma^{\mathrm{op}}\times \mathrm{Sm}/k_+\to\mathcal{M}^{\mathsf{fr}}$;

– the induced functor $\mathcal X\colon \Gamma^{\mathrm{op}} \times\mathrm{Sm}/k_+\to\mathcal M$ equals the composite functor $\Gamma^{\mathrm{op}}\times\mathrm{Sm}/k_+\xrightarrow{\mathcal X'} \mathcal M^{\mathsf{fr}}\xrightarrow{\iota}\mathcal M$ such that the canonical morphism

$$ \begin{equation*} [U,V](Y)\to \mathrm{Hom}_{\mathcal M} \bigl(\mathcal X(K,U),\mathcal X(K,V)(Y\times-)\bigr) \end{equation*} \notag $$
factors through $\mathrm{Hom}_{\mathcal M^{\mathsf{fr}}} (\mathcal X'(K,U),\mathcal X'(K,V)(Y\times-))$ for all $K\in\Gamma^{\mathrm{op}}$, $U,V,Y\in\mathrm{Sm}/k_+$.

Evaluation Functors

Every motivic $\Gamma$-space, namely, $\mathcal X\in [\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+,\mathcal{M}]$ and every $U\in \mathrm{Sm}/k_+$ give rise to an enriched functor $\mathcal X(U)\in [\Gamma^{\mathrm{op}},\mathcal{M}]$. In Example 2.1 we identified $\mathcal X(U)$ with the datum of a pointed functor from $\Gamma^{\mathrm{op}}$ to $\mathcal{M}$. Following Example 2.1.2.1 in [4], by the sphere spectrum we mean the inclusion $\mathbb S\colon \Gamma^{\mathrm{op}}\hookrightarrow \mathbf{S}_{\bullet}$. By taking the left Kan extension along the sphere spectrum $\mathbb S\colon \Gamma^{\mathrm{op}}\hookrightarrow \mathbf{S}_{\bullet}$, we obtain the evaluation functor with values in motivic $S^1$-spectra

$$ \begin{equation} \begin{gathered} \, \mathsf{ev}_{S^1} \colon [\Gamma^{\mathrm{op}},\mathcal{M}] \to \mathbf{Sp}_{S^1}(k), \\ \mathcal X(U)\mapsto \mathcal X(\mathbb S,U) = (\mathcal X(S^{0})(U),\mathcal X(S^1)(U),\mathcal X(S^2)(U),\dots). \end{gathered} \end{equation} \tag{9} $$
We refer to $\mathcal X(\mathbb S,\mathsf{pt})$ as the underlying motivic $S^1$-spectrum of $\mathcal X$.

On the other hand, for $K\in\Gamma^{\mathrm{op}}$ we have an enriched functor $\mathcal X(K)\in [\mathrm{Sm}/k_+,\mathcal{M}]$ (see Example 2.2). Moreover, for $U,V\in \mathrm{Sm}/k_+$, there are natural morphisms in $\mathcal{M}$

$$ \begin{equation*} V_+ \to [U,U\times V]\to\underline{\mathrm{Hom}}_{\,\mathcal{M}} \bigl(\mathcal X(K)(U),\mathcal X(K)(U\times V)\bigr). \end{equation*} \notag $$
By adjunction, we obtain the morphisms
$$ \begin{equation} \begin{gathered} \, \mathcal X(K)(U)\wedge V_+\to\mathcal X(K)(U\times V), \\ \mathcal X(K)(U)\to\underline{\mathrm{Hom}}_{\,\mathcal M} \bigl(V_+,\mathcal X(K)(U\times V)\bigr). \end{gathered} \end{equation} \tag{10} $$

The simplices of $\mathbb{G}\in\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ consist of finite disjoint unions $\mathbb{G}^{\bigsqcup_{<\infty}}_m$ of copies of the multiplicative group scheme $\mathbb{G}_m$ and $\mathsf{pt}$. Namely, the simplices are $\mathbb{G}_m$, $\mathbb{G}_m\sqcup\mathsf{pt}$, $\mathbb{G}_m\sqcup\mathsf{pt}\sqcup\mathsf{pt}$, $\dots$ (we also refer the reader to [8], Notation 8.1). As a special case of (10), we have

$$ \begin{equation} \begin{gathered} \, \mathcal X(K)(U)\wedge (\mathbb{G}^{\bigsqcup_{<\infty}}_m)_+ \to \mathcal X(K)\bigl(U\times \mathbb{G}^{\bigsqcup_{<\infty}}_m\bigr), \\ \mathcal X(K)(U)\to\underline{\mathrm{Hom}}_{\,\mathcal M} \bigl(\bigl(\mathbb{G}^{\bigsqcup_{<\infty}}_m\bigr)_+, \mathcal X(K)\bigl(U\times \mathbb{G}^{\bigsqcup_{<\infty}}_m\bigr)\bigr). \end{gathered} \end{equation} \tag{11} $$
For the smash powers of $\mathbb{G}$, we define the morphisms
$$ \begin{equation} \begin{gathered} \, \mathcal X(K)(\mathbb{G}^{\wedge n})\wedge\mathbb{G}_+\to \mathcal X(K)(\mathbb G^{\wedge n+1}), \\ \mathcal X(K)(\mathbb{G}^{\wedge n})\to\underline{\mathrm{Hom}}_{\,\mathcal M} \bigl(\mathbb{G}_+,\mathcal X(K)(\mathbb G^{\wedge n+1})\bigr) \end{gathered} \end{equation} \tag{12} $$
to be the geometric realization of
$$ \begin{equation*} \begin{gathered} \, l \mapsto\bigl\{\mathcal X(K)((\mathbb G^{\wedge n})_l)\wedge (\mathbb{G}_+)_l \to \mathcal X(K)((\mathbb G^{\wedge (n+1)})_l)\bigr\}, \\ l \mapsto\bigl\{\mathcal X(K)((\mathbb G^{\wedge n})_l) \to \underline{\mathrm{Hom}}_{\,\mathcal M} \bigl((\mathbb{G}_+)_l, \mathcal X(K)((\mathbb G^{\wedge (n+1)})_l)\bigr)\bigr\}, \end{gathered} \end{equation*} \notag $$
obtained from (11). Using (12), we obtain the evaluation functor with values in motivic $\mathbb{G}$-spectra
$$ \begin{equation} \begin{gathered} \, \mathsf{ev}_\mathbb{G} \colon [\mathrm{Sm}/k_+,\mathcal{M}] \to \mathbf{Sp}_{\mathbb{G}}(k), \\ \mathcal X(K)\mapsto \bigl(\mathcal X(K)(\mathsf{pt}), \mathcal X(K)(\mathbb{G}),\mathcal X(K)(\mathbb G^{\wedge 2}),\dots\bigr). \end{gathered} \end{equation} \tag{13} $$

We refer to [9], Ch. 3, § 2.3, for a discussion of the category $\mathbf{Sp}_{S^1,\mathbb{G}}(k)$ of motivic $(S^1,\mathbb{G})$-bispectra. Its associated homotopy category is equivalent to $\mathbf{SH}(k)$. Combining (9) and (13), we obtain the evaluation functor

$$ \begin{equation} \begin{gathered} \, \mathsf{ev}_{S^1,\mathbb{G}} \colon [\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+,\mathcal{M}] \to \mathbf{Sp}_{S^1,\mathbb{G}}(k), \\ \mathcal X \mapsto \mathcal X_{S^1,\mathbb G} = \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X). \end{gathered} \end{equation} \tag{14} $$
More precisely, for $i,j\geqslant 0$ we have
$$ \begin{equation*} \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X)_{i,j}= \mathcal X(S^{i},\mathbb G^{\wedge j})\in\mathcal{M}. \end{equation*} \notag $$
The evident structure maps turn $\mathcal X_{S^1,\mathbb G}$ into a motivic $(S^1,\mathbb{G})$-bispectrum.

In turn, let $[\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+,\mathcal{M}^{\mathsf{fr}}]$ denote the category of $\mathcal M$-enriched functors from $\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+$ to $\mathcal{M}^{\mathsf{fr}}$. Following Definition 2.1, uts objects are the framed motivic $\Gamma$-spaces. If $\mathcal X$ is a framed motivic $\Gamma$-space, then the structure morphisms

$$ \begin{equation*} \begin{gathered} \, \mathcal X(S^{i},\mathbb G^{\wedge j})\to \underline{\mathrm{Hom}} \bigl(S^1,\mathcal X(S^{i+1},\mathbb G^{\wedge j})\bigr), \\ \mathcal X(S^{i},\mathbb G^{\wedge j})\to\underline{\mathrm{Hom}} \bigl(\mathbb G_+,\mathcal X(S^{i+1},\mathbb G^{\wedge j+1})\bigr) \end{gathered} \end{equation*} \notag $$
are morphisms in $\mathcal M^{\mathsf{fr}}$. Therefore, $\mathcal X_{S^1,\mathbb G}\in \mathbf{Sp}^{\mathsf{fr}}_{S^1,\mathbb{G}}(k)$ is a framed motivic $(S^1,\mathbb G)$-bispectrum in the sense of [13], Definition 2.1. Similarly to (14), we obtain the evaluation functor
$$ \begin{equation} \begin{gathered} \, \mathsf{ev}_{S^1,\mathbb{G}} \colon [\Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+,\mathcal{M}^{\mathsf{fr}}] \to \mathbf{Sp}_{S^1,\mathbb{G}}^{\mathsf{fr}}(k), \\ \mathcal X \mapsto \mathcal X_{S^1,\mathbb G} = \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X). \end{gathered} \end{equation} \tag{15} $$

Example 2.3. For every $X\in\mathrm{Sm}/k$, we can form the motivic $\Gamma$-space with sections

$$ \begin{equation*} (K,U) \mapsto \mathrm{Sm}/k_+\bigl(-,K\otimes (X\times U)\bigr). \end{equation*} \notag $$
Its evaluation is the suspension bispectrum $\Sigma^\infty_{S^1}\Sigma^\infty_{\mathbb{G}}X_+$ of $X$. Similarly, we can form the special framed motivic $\Gamma$-space $\underline{\mathrm{Hom}}(X,C_{\ast}\mathrm{Fr})$ with sections
$$ \begin{equation*} (K,U) \mapsto C_{\ast}\mathrm{Fr}\bigl(-,K\otimes (X\times U)\bigr). \end{equation*} \notag $$
Its underlying motivic $S^1$-spectrum $\underline{\mathrm{Hom}}(X,C_{\ast}\mathrm{Fr})(\mathbb S,\mathsf{pt})$ is the framed motive of $X$ (see [8]).

There is a natural morphism of motivic $\Gamma$-spaces

$$ \begin{equation} \mathrm{Sm}/k_+\bigl(-,-\otimes (X\times-)\bigr)\to C_{\ast}\mathrm{Fr}\bigl(-,-\otimes (X\times-)\bigr). \end{equation} \tag{16} $$
By Theorem 11.1 in [8], the evaluation functor in (14) takes the morphism in (16) to a stable motivic equivalence. In particular, the special framed motivic $\Gamma$-space $\underline{\mathrm{Hom}}(\mathsf{pt},C_{\ast}\mathrm{Fr})$ is a model for the motivic sphere $\mathbf {1}$.

By linearization, we obtain the special framed motivic $\Gamma$-space $\underline{\mathrm{Hom}}(X,C_{\ast}\mathbb Z\mathrm{F})$ with sections

$$ \begin{equation*} (K,U) \mapsto C_{\ast}\mathbb Z\mathrm{F}\bigl(-,K\otimes (X\times U)\bigr). \end{equation*} \notag $$
The underlying motivic $S^1$-spectrum $\underline{\mathrm{Hom}} (X,C_{\ast}\mathbb Z\mathrm{F})(\mathbb S,\mathsf{pt})$ is the linear framed motive of $X$ (see [8]).

Example 2.4. Let $\mathcal E$ be a motivic symmetric Thom $T$- or $T^{2}$-spectrum with bounding constant $d\leqslant 1$ and contractible alternating group action in the sense of § 1 in [23]. The main examples are algebraic cobordism $\mathbf{MGL}$ [6] and the $T^2$-spectra $\mathbf {MSL}$, $\mathbf {MSp}$ in [24] (in all of these cases $d=1$). Under these assumption, there exists a special framed motivic $\Gamma$-space $\underline{\mathrm{Hom}}(X,C_{\ast}\mathrm{Fr}^{\mathcal E})$ with sections

$$ \begin{equation*} (K,U) \mapsto C_{\ast}\mathrm{Fr}^{\mathcal E}\bigl(-,K\otimes (X\times U)\bigr). \end{equation*} \notag $$
The evaluation $\mathsf{ev}_{S^1,\mathbb{G}}(\underline{\mathrm{Hom}} (X,C_{\ast}\mathrm{Fr}^{\mathcal E}))$ agrees with $\mathcal E \wedge X_+$ by the proof of Theorem 9.13 in [23]. Moreover, $\underline{\mathrm{Hom}}(X,C_{\ast}\mathrm{Fr}^{\mathcal E}) (\mathbb S,\mathsf{pt})$ is the $\mathcal E$-framed motive of $X$ in the sense of § 9 in [23].

Likewise, we obtain the special framed motivic $\Gamma$-space $\underline{\mathrm{Hom}}(X,C_{\ast}\mathbb Z\mathrm{F}^{\mathcal E})$, whose underlying motivic $S^1$-spectrum is the linear $\mathcal E$-framed motive of $X$, as defined in [23], § 9.

Example 2.5. Suppose that $\mathbf{A}$ is a strict category of Voevodsky correspondences in the sense of Definition 2.3 in [25], and there exists a functor $\mathrm{Fr}_+(k)\to\mathbf{A}$ which is the identity map on objects. Examples include finite Milnor–Witt correspondences $\widetilde{\mathrm{Cor}}$ [26], finite Voevodsky correspondences $\mathrm{Cor}$ [27], and $K_0^{\oplus}$-correspondences [28]. We define $C_{\ast}\mathbf{A}$ to be the very special framed motivic $\Gamma$-space whose sections are the Suslin complex of the Nisnevich sheaf $\mathbf{A}(-,K\otimes U)^{\mathsf{nis}}$, that is, the motivic $\Gamma$-space of the form

$$ \begin{equation*} (K,U) \mapsto C_{\ast}\mathbf{A}(-,K\otimes U)^{\mathsf{nis}}. \end{equation*} \notag $$
Note that $\underline{\mathrm{Hom}}(X,C_{\ast}\mathbf{A})(\mathbb S,\mathsf{pt})$ is the $\mathbf{A}$-motive of $X$, defined in § 2 of [25], where $\underline{\mathrm{Hom}}(X,C_{\ast}\mathbf{A})$ stands for the very special framed motivic $\Gamma$-space with sections $(K,U)\mapsto C_{\ast}\mathbf{A}(-,K\otimes (X\times U))$.

Remark 2.3. The motivic $\Gamma$-spaces in Examples 2.32.5 share the common trait of factoring through the functor $\otimes\colon \Gamma^{\mathrm{op}}\boxtimes \mathrm{Sm}/k_+\to\mathrm{Sm}/k_+$.

§ 3. Special framed motivic $\Gamma$-spaces and infinite motivic loop spaces

Let $\mathcal E$ be a motivic $(S^1,\mathbb{G})$-bispectrum. Using the $n$th weight motivic $S^1$-spectrum, that is, the motivic $S^1$-spectra $\mathcal E(n)$ of the bispectrum $\mathcal E$, as defined by $\mathcal E(n)_{i}=\mathcal E_{i,n}$, we write $\mathcal E=(\mathcal E(0),\mathcal E(1),\dots)$. For integers $p,n\in\mathbb Z$, let $\pi^{\mathbb A^1}_{p,n}\mathcal E$ be the Nisnevich sheaf on $\mathrm{Sm}/k$, associated with the presheaf

$$ \begin{equation*} U \mapsto \mathbf{SH}(k)(U_+\wedge S^{p-n}\wedge \mathbb{G}^{\wedge n},\mathcal E). \end{equation*} \notag $$
Recall that $\mathcal E$ is connective if $\pi^{\mathbb A^1}_{p,n}\mathcal E=0$ for all $p<n$. Similarly, a motivic $S^1$-spectrum $\mathcal E\in \mathbf{Sp}_{S^1}(k)$ is connective if $\pi^{\mathbb A^1}_n\mathcal E=0$ for all $n<0$. For a Nisnevich sheaf $F$ of abelian groups on $\mathrm{Sm}/k$, let $F_{-1}$ denote the Nisnevich sheaf given by $U\mapsto\ker(1^{\ast}\colon F(U\times\mathbb G_m)\to F(U))$.

Lemma 3.1. A framed motivic $(S^1,\mathbb{G})$-bispectrum $\mathcal E=(\mathcal E(0),\mathcal E(1),\dots)$ in the sense of § 2 in [13] is connective if and only if $\mathcal E(n)$ is a connective motivic $S^1$-spectrum for every $n\geqslant 0$.

Proof. Without loss of generality, we may assume that the underlying motivic bispectrum $\mathcal E$ is fibrant (we use here Lemma 2.6] of [13]). Writing $|\,{-}\,|$ for the absolute value, we have $\pi_{p,n}^{\mathbb A^1}\mathcal E=\pi_{p-n}^{\mathsf{nis}}\mathcal E(|n|)$ if $n\leqslant 0$. At the same time, $\pi_{p,n}^{\mathbb A^1}\mathcal E= \pi_{p-n}^{\mathsf{nis}}\Omega_{\mathbb G^{\wedge n}}\mathcal E(0)$ if $n>0$. Here, $\pi_{\ast}^{\mathsf{nis}}$ denotes the Nisnevich sheaf associated with $\pi_{\ast}$. The proof of the sublemma in § 12 of [8] shows that
$$ \begin{equation*} \pi_{p-n}^{\mathsf{nis}}\Omega_{\mathbb G^{\wedge n}}\mathcal E(0) = \pi_{p-n}^{\mathsf{nis}}\mathcal E(0)_{-n}. \end{equation*} \notag $$
If $\mathcal E$ is connective, then $\pi_{p-n}^{\mathsf{nis}}\mathcal E(|n|)=0$ for all $n\leqslant 0$ and $p<n$. In particular, for all $s>0$ and $n\leqslant 0$ the sheaf $\pi_{-s}^{\mathsf{nis}}\mathcal E(|n|)$ is trivial. The converse implication is evident. This proves Lemma 3.1.

Recall that $\mathbf{Sp}_{S^1}(k)$ is naturally enriched in $\mathcal M$ (see the proof of Theorem 6.3 in [29]). In fact, for $\mathcal E,\mathcal F\in\mathbf{Sp}_{S^1}(k)$ one defines $\mathcal M(\mathcal E,\mathcal F)$ as the equalizer of the diagram

$$ \begin{equation} \prod_n\mathcal M(\mathcal E_n,\mathcal F_n)\quad \Longrightarrow \quad \prod_n\mathcal M\bigl(\mathcal E_n, \underline{\mathrm{Hom}}_{\,\mathcal M}(S^1,\mathcal F_{n+1})\bigr). \end{equation} \tag{17} $$
Here, we employ the morphism $\mathcal M(\mathcal E_n,\mathcal F_n)\to \mathcal M(\mathcal E_n,\underline{\mathrm{Hom}}_{\,\mathcal M} (S^1,\mathcal F_{n+1}))$ induced by the adjoint of the structure maps of $\mathcal F$, and the canonically induced morphism
$$ \begin{equation*} \mathcal M(\mathcal E_{n+1},\mathcal F_{n+1}) \to \mathcal M(\mathcal E_n\wedge S^1,\mathcal F_{n+1}) \cong \mathcal M\bigl(\mathcal E_n, \underline{\mathrm{Hom}}_{\,\mathcal M}(S^1,\mathcal F_{n+1})\bigr). \end{equation*} \notag $$

We shall refer to $\mathbf{Sp}_{S^1}([\mathrm{Sm}/k_+,\mathcal M])$ as the category of spectral functors (see [13], § 5). The objects are $S^1$-spectra in the closed symmetric monoidal $\mathcal M$-category $[\mathrm{Sm}/k_+,\mathcal M]$, introduced in Example 2.2. Similarly to (13) (see [13], § 5, (3)) there exists an evaluation functor

$$ \begin{equation*} \mathsf{ev}_\mathbb{G}\colon \mathbf{Sp}_{S^1}([\mathrm{Sm}/k_+,\mathcal M]) \to \mathbf{Sp}_{S^1,\mathbb G}(k). \end{equation*} \notag $$

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For $\mathcal X\in \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ and $n\geqslant 0$, by Definition 1.1 the geometric realization functor furnishes the associated $\mathcal M$-enriched functor
$$ \begin{equation*} \mathcal X(\mathbb{G}^{\wedge n})\colon =\bigl|l\mapsto \mathcal X\bigl(-,(\mathbb G^{\wedge n})_l\bigr)\bigr| \in [\Gamma^{\mathrm{op}},\mathcal M^{\mathsf{fr}}]. \end{equation*} \notag $$
By Example 2.1, this is a pointed functor from $\Gamma^{\mathrm{op}}$ to $\mathcal M^{\mathsf{fr}}$. Applying the functor $\mathsf{ev}_{S^1}$ in (9), yields the motivic $S^1$-spectrum $\mathsf{ev}_{S^1}(\mathcal X(\mathbb{G}^{\wedge n}))= \mathcal X(\mathbb S,\mathbb{G}^{\wedge n})$. By Lemma 2.5 in [13], the $S^1$-spectrum $\mathcal X(\mathbb S,\mathbb{G}^{\wedge n})$ is $\mathbb A^1$-local. Moreover, $\mathcal X(\mathbb S,\mathbb{G}^{\wedge n})$ is sectionwise connective because on every section it is the $S^{1}$-spectrum associated with a $\Gamma$-space. It follows that $\mathcal X(\mathbb S,\mathbb{G}^{\wedge n})$ is a connective motivic $S^1$-spectrum for every $n\geqslant 0$. For the evaluation functor $\mathsf{ev}_{S^1,\mathbb{G}}$ in (14) we have
$$ \begin{equation*} \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X)(n)= \mathcal X(\mathbb S,\mathbb{G}^{\wedge n}). \end{equation*} \notag $$
Combined with Lemma 3.1 we conclude that $\mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X)\in \mathbf{SH}(k)_{\geqslant 0}$. Hence the evaluation functor (15) assumes value in $\mathbf{SH}(k)_{\geqslant 0}$:
$$ \begin{equation} \mathsf{ev}_{S^1,\mathbb{G}}\colon \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)\to \mathbf{SH}(k)_{\geqslant 0}. \end{equation} \tag{18} $$
By the construction of $\mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)$ (see Definition 1.1) the functor $\mathsf{ev}_{S^1,\mathbb{G}}$ in (18) is fully faithful. It remains to show essential surjectivity — this is the most interesting part of the proof.

Suppose $\mathcal E$ is a cofibrant and fibrant symmetric motivic $(S^1,\mathbb{G})$-bispectrum. Then there exists a framed spectral functor $\mathcal M^{\mathcal E}_{\mathsf{fr}}$ in the sense of Definition 6.1 in [13] such that $\mathsf{ev}_\mathbb{G}(\mathcal M_{\mathsf{fr}}^{\mathcal E})$ is naturally isomorphic to $\mathcal E$ in $\mathbf{SH}(k)$ (see [13], § 6). In fact, $\mathcal M^{\mathcal E}_{\mathsf{fr}}$ enables the equivalence between $\mathbf{SH}(k)$ and framed spectral functors in (see [13], Theorem 6.3, Definition 6.5).

We briefly recall the construction of $\mathcal M_{\mathsf{fr}}^{\mathcal E}$, since it is important for the details of this proof. The motivic spaces $C_{\ast}\mathrm{Fr}(\mathcal E_{i,j})$ conspire into a motivic $(S^1,\mathbb{G})$-bispectrum $C_{\ast}\mathrm{Fr}(\mathcal E)$. For $n\geqslant 0$, we let $R^n_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E)$ denote $\underline{\mathrm{Hom}}(\mathbb{G}^{\wedge n}, C_{\ast}\mathrm{Fr}(\mathcal E[n]))$, where $\mathcal E[n]$ is the $n$th shift of $\mathcal E$ in the $\mathbb{G}$-direction. In each weight $i\geqslant 0$, we have the motivic $S^1$-spectrum

$$ \begin{equation*} R^n_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E)(i)= \underline{\mathrm{Hom}}\bigl(\mathbb{G}^{\wedge n}, C_{\ast}\mathrm{Fr}(\mathcal E(n+i))\bigr). \end{equation*} \notag $$
Next, there is a canonical morphism of motivic $(S^1,\mathbb{G})$-bispectra
$$ \begin{equation*} R^n_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E)\to R^{n+1}_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E). \end{equation*} \notag $$
We also set
$$ \begin{equation*} R^\infty_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E):= \operatorname{colim}\bigl(C_{\ast}\mathrm{Fr}(\mathcal E)\to R^1_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E)\to R^2_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E)\to\cdots\bigr). \end{equation*} \notag $$
According to [13], § 6, Claim 2, there are stable motivic equivalences
$$ \begin{equation*} \mathcal E\to C_{\ast}\mathrm{Fr}(\mathcal E)\to R^\infty_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E). \end{equation*} \notag $$
For $n\geqslant 0$, we define the spectral functor $\mathbb GC_{\ast}\mathrm{Fr}^{\mathcal E}[n]$ sectionwise by
$$ \begin{equation*} U\mapsto \underline{\mathrm{Hom}}\bigl(\mathbb{G}^{\wedge n}, C_{\ast}\mathrm{Fr}(\mathcal E(n)\wedge U_+)\bigr). \end{equation*} \notag $$
By construction, there is a natural morphism of spectral functors
$$ \begin{equation*} \mathbb GC_{\ast}\mathrm{Fr}^{\mathcal E}[n]\to \mathbb GC_{\ast}\mathrm{Fr}^{\mathcal E}[n+1], \end{equation*} \notag $$
and we set
$$ \begin{equation*} \mathcal M_{\mathsf{fr}}^{\mathcal E}:= \operatorname{colim} (\mathbb GC_{\ast}\mathrm{Fr}^{\mathcal E}[0]\to \mathbb GC_{\ast}\mathrm{Fr}^{\mathcal E}[1]\to\cdots). \end{equation*} \notag $$

By [13], Lemma 6.6, there is a morphism of motivic $(S^1,\mathbb{G})$-bispectra

$$ \begin{equation} \mathsf{ev}_\mathbb{G}(\mathcal M_{\mathsf{fr}}^{\mathcal E})\to R^\infty_{\mathbb{G}}C_{\ast}\mathrm{Fr}(E^c). \end{equation} \tag{19} $$
In every weight, (19) is a stable local equivalence of motivic $S^1$-spectra due to Lemma 6.7 in [13], this implies the zigzag of stable motivic equivalences
$$ \begin{equation*} \mathcal E\to R^\infty_{\mathbb{G}} C_{\ast}\mathrm{Fr}(\mathcal E) \leftarrow \mathsf{ev}_\mathbb{G}(\mathcal M_{\mathsf{fr}}^{\mathcal E}), \end{equation*} \notag $$
and therefore, an isomorphism in $\mathbf{SH}(k)$
$$ \begin{equation} \mathsf{ev}_\mathbb{G}(\mathcal M_{\mathsf{fr}}^{\mathcal E}) \cong \mathcal E. \end{equation} \tag{20} $$

For $U\in\mathrm{Sm}/k_+$, the motivic $S^1$-spectrum $\mathcal M^{\mathcal E}_{\mathsf{fr}}(U)$ is not necessarily a sectionwise $\Omega$-spectrum. However, the above property holds for the framed spectral functor ${\mathbb M}^{\mathcal E}_{\mathsf{fr}}$, with sections

$$ \begin{equation*} U\mapsto \Theta^{\infty}_{S^1}\mathcal M^{\mathcal E}_{\mathsf{fr}}(U). \end{equation*} \notag $$
Here, $\Theta^{\infty}_{S^1}$ is the motivic $S^1$-stabilization functor defined in [29], Definition 4.2. By construction, there is a canonical morphism
$$ \begin{equation} {\mathcal M}^{\mathcal E}_{\mathsf{fr}}(U)\to {\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U). \end{equation} \tag{21} $$
We note that (21) is a sectionwise stable equivalence of motivic $S^1$-spectra.

Next, we use (17) to define the motivic $\Gamma$-space $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ by setting

$$ \begin{equation*} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(n_+,U) := \mathcal M(\mathbb S^{\times n}, \mathbb M_{\mathsf{fr}}^{\mathcal E}(U)),\qquad n\geqslant 0,\quad U\in\mathrm{Sm}/k. \end{equation*} \notag $$
Here, the $S^1$-spectrum $\mathbb S^{\times n}:=\mathbb S\times \overset{n}{\cdots}\times\mathbb S$ is regarded as a constant motivic $S^1$-spectrum. For all $U,V\in\mathrm{Sm}/k_+$ and the adjunction $(\mathsf{ev}_{S^1},\Phi)$ between $\Gamma$-spaces and spectra in [3], § 5, we have
$$ \begin{equation} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(n_+,U)(V)= \Phi\bigl(\mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)\bigr)(n_+)= \mathbf{S}_{\bullet}\bigl(\mathbb S^{\times n}, \mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)\bigr). \end{equation} \tag{22} $$
This expression determines the values of $\Phi$ at the $S^1$-spectrum $\mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)$. Moreover, the counit $\mathsf{ev}_{S^1}\circ\Phi\to\operatorname{id}$ induces a morphism of spectral functors
$$ \begin{equation} \mathsf{ev}_{S^1}(\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E})\to \mathbb M_{\mathsf{fr}}^{\mathcal E}. \end{equation} \tag{23} $$

By construction, $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ is a framed motivic $\Gamma$-space in the sense of Definition 2.1. Moreover, in each weight $n\geqslant 0$ morphism (21) induces a sectionwise stable equivalence of motivic $S^1$-spectra

$$ \begin{equation*} \mathsf{ev}_{\mathbb{G}}(\mathcal M^{\mathcal E}_{\mathsf{fr}})(n) \to \mathsf{ev}_{\mathbb{G}}(\mathbb M^{\mathcal E}_{\mathsf{fr}})(n). \end{equation*} \notag $$
In combination with (20) we deduce an isomorphism in $\mathbf{SH}(k)$
$$ \begin{equation} \mathsf{ev}_{\mathbb{G}}(\mathbb M^{\mathcal E}_{\mathsf{fr}})\cong \mathcal E. \end{equation} \tag{24} $$
We will show that $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ satisfies axioms 1–4, and also (5) provided that $\mathcal E\in \mathbf{SH}(k)_{\geqslant 0}$.

Clearly we have $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(0_+,U)=\ast= \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(n_+,\varnothing)$ for all $U\in\mathrm{Sm}/k_+$ and $n\geqslant 0$. Moreover, the canonical sectionwise stable equivalence of cofibrant motivic $S^1$-spectra

$$ \begin{equation*} \mathbb S\vee\overset{n}{\cdots}\vee\mathbb S \to \mathbb S\times\overset{n}{\cdots}\times\mathbb S \end{equation*} \notag $$
induces, via (17) and (22), the sectionwise equivalence of motivic spaces
$$ \begin{equation*} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(n_+,U) = \mathcal M\bigl(\mathbb S^{\times n}, \mathbb M_{\mathsf{fr}}^{\mathcal E}(U)\bigr)\to \mathcal M\bigl(\mathbb S^{\vee n}, \mathbb M_{\mathsf{fr}}^{\mathcal E}(U)\bigr) \cong \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,U)^{\times n}. \end{equation*} \notag $$
This establishes Axiom 1.

Next, for $U\in\mathrm{Sm}/k_+$ the presheaf of stable homotopy groups $\pi_n\mathsf{ev}_{S^1}({\Gamma\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$ is isomorphic to $\pi_n({\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$ if $n\geqslant 0$, and trivial if $n<0$ (this follows as in Theorem 5.1 of [3]). By (21), there is an isomorphism of presheaves between $\pi_{\ast}({\mathcal M}^{\mathcal E}_{\mathsf{fr}}(U))$ and $\pi_{\ast}({\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$. Since the former is framed in addition to being $\mathbb A^1$-invariant and $\sigma$-invariant, the same holds for $\pi_{\ast}\mathsf{ev}_{S^1} ({\Gamma\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$. This shows that Axiom 2 holds.

Axioms 3 and 4 hold because ${\mathbb M}^{\mathcal E}_{\mathsf{fr}}$ is a framed spectral functor and the presheaves of stable homotopy groups $\pi_n\mathsf{ev}_{S^1}({\Gamma\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$ of the connective $\mathbb A^1$-local motivic $S^1$-spectrum $\mathsf{ev}_{S^1}({\Gamma\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$ are isomorphic to $\pi_n({\mathbb M}^{\mathcal E}_{\mathsf{fr}}(U))$ for all $n\geqslant 0$ and $U\in\mathrm{Sm}/k_+$.

Let us verify Axiom 5 assuming that $\mathcal E\in \mathbf{SH}(k)_{\geqslant 0}$. Indeed, the proof of Theorem 6.3 in [13] shows that $\mathcal E\wedge U_+\in \mathbf{SH}(k)_{\geqslant 0}$ is isomorphic to $\mathsf{ev}_\mathbb{G}(\mathbb M^{\mathcal E}_{\mathsf{fr}}(-\times U))$ for all $U\in\mathrm{Sm}/k_+$. Here, $\mathbb M^{\mathcal E}_{\mathsf{fr}}(-\times U) $ is the framed spectral functor with sections

$$ \begin{equation*} X \mapsto \mathbb M^{\mathcal E}_{\mathsf{fr}}(X\times U). \end{equation*} \notag $$
By Lemma 3.1, the $\mathbb A^1$-local motivic $S^1$-spectrum $\mathbb M^{\mathcal E}_{\mathsf{fr}}(U)$ is connective. Indeed, $\mathbb M^{\mathcal E}_{\mathsf{fr}}(U)$ is the zeroth weight of the framed bispectrum $\mathsf{ev}_\mathbb{G}(\mathbb M^{\mathcal E}_{\mathsf{fr}}(-\times U))$, whose weights are $\mathbb A^1$-local by Lemma 2.6 in [13]. Thus, for all $U\in\mathrm{Sm}/k_+$, the morphism (23) yields a stable local equivalence of connective motivic $S^1$-spectra
$$ \begin{equation*} \Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}(\mathbb S,U) \to \mathbb M^{\mathcal E}_{\mathsf{fr}}(U). \end{equation*} \notag $$
As a result, $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}(\mathbb S,-)$ is a framed spectral functor and the framed motivic $\Gamma$-space $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}$ satisfies Nisnevich excision as in Axiom 5. This completes the proof of Theorem 1.1.

Remark 3.1. The proof of Theorem 1.1 shows that a quasi-inverse functor $\Gamma\mathbb M_{\mathsf{fr}}$ to the equivalence $\mathsf{ev}_{S^1,\mathbb{G}}\colon \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k){\to}\mathbf{SH}(k)_{\geqslant 0}$ is given as follows: for $\mathcal E\in\mathbf{SH}(k)_{\geqslant 0}$ take a functorial cofibrant and fibrant replacement $\mathcal E'$ in the stable model structure on symmetric motivic $(S^1,\mathbb G)$-bispectra. Then map $\mathcal E$ to the framed motivic $\Gamma$-space $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E'}$.

With Theorem 1.1 in hand we can prove Theorem 1.2.

Proof of Theorem 1.2. Following § 3, p. 1131 in [30], and § 5 in [14], we have
$$ \begin{equation*} \mathbf{SH}^{\mathsf{veff}}(k)=\mathbf{SH}(k)_{\geqslant 0}\cap \mathbf{SH}^{\mathsf{eff}}(k), \end{equation*} \notag $$
where $\mathbf{SH}^{\mathsf{eff}}(k)$ is the full subcategory of $\mathbf{SH}(k)$ comprised of effective bispectra. For $\mathcal X\in \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{veffr}}(k)$, the evaluation $\mathcal X_{S^1,\mathbb G}$ is contained in $\mathbf{SH}(k)_{\geqslant 0}$ by Theorem 1.1. By Axiom 6, the $S^1$-spectrum
$$ \begin{equation*} \bigl|\mathcal X(\mathbb S,\mathbb{G}\times U) \bigl(\widehat{\Delta}^\bullet_{K/k}\bigr)\bigr| \end{equation*} \notag $$
is stably contractible for any finitely generated field extension $K/k$ and $U\in\mathrm{Sm}/k$. It follows that
$$ \begin{equation*} \bigl|\mathcal X(\mathbb S,\mathbb{G}^{\wedge n}) \bigl(\widehat{\Delta}^\bullet_{K/k}\bigr)\bigr| \end{equation*} \notag $$
is stably contractible for every $n>0$. We deduce that $\mathcal X_{S^1,\mathbb G}\in\mathbf{SH}^{\mathsf{eff}}(k)$ and thus $\mathcal X_{S^1,\mathbb G}\in\mathbf{SH}^{\mathsf{veff}}(k)$ thanks to [12], Theorem 4.4, and [13], Definition 3.5, Theorem 3.6.

We have shown the restriction of the equivalence $\mathsf{ev}_{S^1,\mathbb{G}} \colon \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)\xrightarrow{\simeq} \mathbf{SH}(k)_{\geqslant 0}$ in Theorem 1.1 to the full subcategory $\mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{veffr}}(k)$ takes values in $\mathbf{SH}^{\mathsf{veff}}(k)$. It remains to show that it is essentially surjective.

Suppose that $\mathcal E$ is a very effective cofibrant and fibrant symmetric motivic $(S^1,\mathbb G)$-bispectrum. By Theorem 1.1, there exists a framed motivic $\Gamma$-space $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}$ and an isomorphism between $\mathsf{ev}_{S^1,\mathbb{G}}(\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}})$ and $\mathcal E$ in $\mathbf{SH}(k)_{\geqslant 0}$. Moreover, the proof of Theorem 1.1 shows that, for every $U\in\mathrm{Sm}/k_+$, there is an isomorphism in $\mathbf{SH}(k)_{\geqslant 0}$ between $\mathcal E\wedge U_+$ and $\mathsf{ev}_{S^1,\mathbb{G}}(\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}} (-\times U))$. Here, $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}(-\times U)$ is the framed motivic $\Gamma$-space with sections

$$ \begin{equation*} (n_+,X)\mapsto \Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}(n_+,X\times U). \end{equation*} \notag $$
Recall that $\mathbf{SH}^{\mathsf{veff}}(k)$ is closed under the smash products in $\mathbf{SH}(k)$ by Lemma 5.6 in [14]. In particular, $\mathcal E\wedge U_+\in \mathbf{SH}^{\mathsf{veff}}(k)$. To verify that the $S^1$-spectrum
$$ \begin{equation*} \bigl|\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}(\mathbb S,\mathbb{G}\times U) \bigl(\widehat{\Delta}^\bullet_{K/k}\bigr)\bigr| \end{equation*} \notag $$
is stably contractible we appeal to Theorem 3.6 in [13]. Hence the framed motivic $\Gamma$-space $\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}}$ is effective, and so $\mathcal E$ is isomorphic to $\mathsf{ev}_{S^1,\mathbb{G}}(\Gamma\mathbb M^{\mathcal E}_{\mathsf{fr}})$ in $\mathbf{SH}^{\mathsf{veff}}(k)$. Theorem 1.2 is proved.

Suppose that $\mathcal E$ is a motivic $(S^1,\mathbb G)$-bispectrum with motivic fibrant replacement $\mathcal E^{f}$. We will write $\Omega_{S^1}^{\infty}\Omega_\mathbb{G}^{\infty} \mathcal E$ for the pointed motivic space $\mathcal E^{f}_{0,0}$.

Definition 3.1. A pointed motivic space $A$ is an infinite motivic loop space if there exists a motivic $(S^1,\mathbb G)$-bispectrum $\mathcal E$ and local equivalence $A\simeq\Omega_{S^1}^{\infty}\Omega_\mathbb{G}^{\infty} \mathcal E$.

Lemma 3.2. Suppose that $\mathcal X$ is a very special framed motivic $\Gamma$-space. Then the bispectrum ${\mathcal X}^{f}_{S^1,\mathbb{G}}$, as obtained from ${\mathcal X}_{S^1,\mathbb{G}}$ by taking levelwise local fibrant replacements is motivically fibrant.

Proof. This follows from Lemma 2.6 in [13], since the $S^1$-spectrum, associated with a very special $\Gamma$-space is an $\Omega$-spectrum after taking levelwise fibrant replacements (see Corollary 2.2.1.7 in [4]).

The above brings us to the proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality we may assume that $\mathcal E\in\mathbf{SH}(k)_{\geqslant 0}$. Indeed, it follows from p. 374 in [31] that, for any $\mathcal E$, the connective cover $\tau_{\geqslant 0}\mathcal E\to\mathcal E$ yields a sectionwise equivalence
$$ \begin{equation*} \Omega^\infty_{S^1}\Omega^\infty_\mathbb{G}(\tau_{\geqslant 0}\mathcal E) \to \Omega^\infty_{S^1}\Omega^\infty_\mathbb{G}(\mathcal E). \end{equation*} \notag $$
Now every $\mathcal E\in \mathbf{SH}(k)_{\geqslant 0}$ is isomorphic to the bispectrum $\mathsf{ev}_{S^1,\mathbb{G}}(\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E})$ for some special framed motivic $\Gamma$-space $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ (see the proof of Theorem 1.1). For $n\geqslant 0$ and $U,V\in\mathrm{Sm}/k_+$, from (22) we have
$$ \begin{equation*} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(n_+,U)(V)= \Phi\bigl(\mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)\bigr)(n_+)= \mathbf{S}_{\bullet}\bigl(\mathbb S^{\times n}, \mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)\bigr). \end{equation*} \notag $$
Here, $\mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)$ is the $\Omega$-spectrum $\Theta^{\infty}_{S^1}\mathcal M_{\mathsf{fr}}^{\mathcal E}(U)(V)$, which was introduced in the proof of Theorem 1.1. It follows that $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,U)(V)$ is the zeroth space ${\mathbb M}_{\mathsf{fr}}^{\mathcal E}(U)(V)_0$ of the $\Omega$-spectrum ${\mathbb M}_{\mathsf{fr}}^{\mathcal E}(U)(V)$. Thus $\pi_0(\mathbb M_{\mathsf{fr}}^{\mathcal E}(U)(V)_0)$ is an abelian group, and $\pi_0^{\mathsf{nis}}\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,U)$ is a Nisnevich sheaf of abelian groups. This shows that $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}$ is a very special framed motivic $\Gamma$-space (see Axiom 7).

An appeal to Lemma 3.2 shows that the bispectrum $\mathsf{ev}_{S^1,\mathbb{G}}(\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E})^f$, as obtained by taking levelwise local fibrant replacements from $\mathsf{ev}_{S^1,\mathbb{G}} (\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E})$, is motivically fibrant. Hence there exists a sectionwise equivalence of pointed motivic spaces

$$ \begin{equation*} \Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,\mathsf{pt})^f= \mathsf{ev}_{S^1,\mathbb{G}} (\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E})^f_{0,0} \simeq \Omega^{\infty}_{S^1}\Omega^{\infty}_\mathbb{G}\mathcal E. \end{equation*} \notag $$
We conclude that $\Gamma\mathbb M_{\mathsf{fr}}^{\mathcal E}(1_+,\mathsf{pt})$ is locally equivalent to $\Omega^{\infty}_{S^1}\Omega^{\infty}_\mathbb{G}\mathcal E$.

Now suppose $\mathcal X$ is a very special framed motivic $\Gamma$-space. By Lemma 3.2, ${\mathcal X}^{f}_{S^1,\mathbb{G}}$ is motivically fibrant and we deduce

$$ \begin{equation*} \mathcal X(1_+,\mathsf{pt})^f = \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X)^f_{0,0} \simeq \Omega^{\infty}_{S^1}\Omega^{\infty}_\mathbb{G} {\mathcal X}^{f}_{S^1,\mathbb{G}}. \end{equation*} \notag $$
Since $\mathcal X(1_+,\mathsf{pt})$ is locally equivalent to $\mathcal X(1_+,\mathsf{pt})^f$ it follows that $\mathcal X(1_+,\mathsf{pt})$ is an infinite motivic loop space in the sense of Definition 3.1. Theorem 1.3 is proved.

Remark 3.2. Every special framed motivic $\Gamma$-space $\mathcal X\colon \Gamma^{\mathrm{op}}\boxtimes\mathrm{Sm}/k_+\to\mathcal M$ has a canonically associated very special framed motivic $\Gamma$-space with sections

$$ \begin{equation*} (n_+,U)\mapsto \Omega_{S^1}\mathrm{Ex}^{\infty}\mathcal X(S^1\wedge n_+,U). \end{equation*} \notag $$
In this expression, the Kan fibrant replacement functor $\mathrm{Ex}^{\infty}$ is applied sectionwise in the category $\mathbf{S}_{\bullet}$.

We complete this section by discussing the diagram (4) of adjoint functors from the introduction:

The functor $u\colon \mathbf{H}_{\Gamma\mathcal{M}}^{\mathsf{fr}}(k)\to\mathbf{H}(k)$ sends a framed motivic $\Gamma$-space $\mathcal X$ to its underlying motivic space $\mathcal X(1_+,\mathsf{pt})$. Moreover, $C_{\ast}\mathrm{Fr}$ sends a motivic space $A$ to $C_{\ast}\mathrm{Fr}(A^c\otimes-)$, where $A^c $ is the projective cofibrant replacement of $A$. Recall that $A^c$ is a directed colimit in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ of simplicial smooth schemes.

The composite functor $\mathsf{ev}_{S^1,\mathbb{G}}\circ C_{\ast}\mathrm{Fr}$ is equivalent to $\Sigma^{\infty}_{S^1,\mathbb G}$ due to § 11 in [8]. Theorem 1.3 implies that $u\circ\Gamma\mathbb M_{\mathsf{fr}}$ is equivalent to $\Omega^{\infty}_{S^1,\mathbb G}$. Thus the adjoint pair $(\Sigma^{\infty}_{S^1,\mathbb G},\Omega^{\infty}_{S^1,\mathbb G})$ is equivalent to $(\mathsf{ev}_{S^1,\mathbb{G}}\circ C_{\ast}\mathrm{Fr},u\circ\Gamma\mathbb M_{\mathsf{fr}})$. Since $(\mathsf{ev}_{S^1,\mathbb{G}},\Gamma\mathbb M_{\mathsf{fr}})$ is an adjoint equivalence by Theorem 1.1, $(C_{\ast}\mathrm{Fr},u)$ is a pair of adjoint functors.

Corollary 3.1. The diagram of adjoint functors (4) commutes up to equivalence of functors.

§ 4. Further properties of motivic $\Gamma$-spaces

Let $\mathcal X\colon \Gamma^{\mathrm{op}}\boxtimes\mathrm{Sm}/k_+ \to \mathcal M^{\mathsf{fr}}$ be a framed motivic $\Gamma$-space. One has an enriched functor

$$ \begin{equation*} \mathcal X(1_+,-)\colon \mathrm{Sm}/k_+ \to \mathcal M^{\mathsf{fr}},\qquad U \mapsto \mathcal X(1_+,U). \end{equation*} \notag $$
For all $U,V\in\mathrm{Sm}/k_+$ we have the elementary Nisnevich square:

If $\mathcal X$ is (very) special in the sense of Axioms, then axioms 1 and 5 imply the stable local equivalence

$$ \begin{equation} \mathcal X(\mathbb S,U)\vee\mathcal X(\mathbb S,V)\to \mathcal X(\mathbb S,U\sqcup V). \end{equation} \tag{25} $$
On the other hand, the sectionwise stable equivalence
$$ \begin{equation*} \mathcal X(\mathbb S,U)\vee\mathcal X(\mathbb S,V)\to \mathcal X(\mathbb S,U)\times\mathcal X(\mathbb S,V) \end{equation*} \notag $$
factors as
$$ \begin{equation*} \mathcal X(\mathbb S,U)\vee\mathcal X(\mathbb S,V)\to \mathcal X(\mathbb S,U\sqcup V)\to \mathcal X(\mathbb S,U)\times\mathcal X(\mathbb S,V). \end{equation*} \notag $$
It follows that the rightmost morphism is a local stable equivalence. This shows that the morphism of motivic spaces
$$ \begin{equation*} \mathcal X(1_+,U\sqcup V)\to\mathcal X(1_+,U)\times\mathcal X(1_+,V) \end{equation*} \notag $$
is a local equivalence, and similarly, so is
$$ \begin{equation*} \mathcal X(1_+,n_+\otimes U)\to\mathcal X(1_+,U)\times \overset{n}{\cdots}\times\mathcal X(1_+,U),\qquad n\geqslant 1. \end{equation*} \notag $$
Here, we write $n_+\otimes U:= U\sqcup\,{\overset{n}{\cdots}}\,\sqcup U\in\mathrm{Sm}/k_+$. Axiom 1 ensures that $\mathcal X(1_+, 0_+\otimes U)=\ast$, since by definition $0_+\otimes U:=\varnothing$. Moreover, if $\mathcal X$ is very special then the Nisnevich sheaf $\pi^{\mathsf{nis}}_{0}\mathcal X(1_+,U)$ takes values in abelian groups due to Axiom 7. We record these observations in the next lemma.

Lemma 4.1. For any very special framed motivic $\Gamma$-space $\mathcal X$ and $U\in\mathrm{Sm}/k_+$, the functor

$$ \begin{equation*} n_+\mapsto \mathcal X(1_+,n_+\otimes U) \end{equation*} \notag $$
is locally a very special $\Gamma$-space.

Let us fix a cofibrant replacement functor $A\to A^{\mathrm{c}}$ in the projective motivic model structure on $\mathcal M$ in the sense of § 3 in [19], [20]. Then $A^{\mathrm{c}}$ is a sequential colimit of simplicial $k$-smooth schemes in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$. For a motivic $\Gamma$-space $\mathcal X$, we define the functor $\mathcal X(1_+,-)\colon \mathcal M\to\mathcal M$ by setting

$$ \begin{equation*} \mathcal X(1_+,A):=\operatorname{colim}_{(\Delta[n]\times U)_+\to A} \mathcal X(1_+,\Delta[n]_+\otimes U),\qquad A\in\mathcal M. \end{equation*} \notag $$
Here, we identify the pointed motivic space $A$ with $\operatorname{colim}_{(\Delta[n]\times U)_+\to A}(\Delta[n]\times U)_+$.

A key property of $\Gamma$-spaces says that if $f\colon K\to L$ is an equivalence in $\mathbf{S}_\bullet$, then so is $F(f)\colon F(K)\to F(L)$, that is, an equivalence for each $\Gamma$-space $F\colon \Gamma^\mathrm{op}\to\mathbf{S}_\bullet$ (see Proposition 4.9 in [3] and Lemma 2.2.1.3 in [4]). The following result is a motivic counterpart of this property.

Theorem 4.1. For any very special framed motivic $\Gamma$-space $\mathcal X$, the functor

$$ \begin{equation*} \mathcal X(1_+,-)\colon \mathcal M \to \mathcal M,\qquad A\mapsto \mathcal X(1_+,A^{\mathrm{c}}), \end{equation*} \notag $$
takes motivic equivalences to local equivalences of motivic spaces. Hence if $\mathcal X$ is a special framed motivic $\Gamma$-space, then the functor
$$ \begin{equation*} \mathcal X(\mathbb S,-)\colon \mathcal M \to \mathbf{Sp}_{S^1}(k),\qquad A\mapsto \mathcal X(\mathbb S,A^{\mathrm{c}}), \end{equation*} \notag $$
takes motivic equivalences to stable local equivalences of motivic $S^1$-spectra.

Our proof of Theorem 4.1 is inspired by Voevodsky’s theory of left derived radditive functors as in Theorem 4.19 of [32]. The basic notions we will need in this paper are recalled below. In this context, we note that the category $\mathrm{Sm}/k_+$ has finite coproducts.

Recall that a morphism $e\colon A\to X$ in a category $\mathcal C$ is a coprojection if it is isomorphic to the canonical morphism $A\to A\sqcup Y$ for some $Y$ (see § 2 in [32]). A morphism $f\colon A\to X$ in $\Delta^{\mathrm{op}}\mathcal C$ is a termwise coprojection if, for all $i\geqslant 0$, the morphism $f_i\colon A_i\to X_i$ is a coprojection. As observed in § 2 of [32], a morphism $f\colon B\to A$ and an object $X$ conspire into the pushout:

It follows that there exist pushouts for all pairs of morphisms $(e,f)$ with $e$, a coprojection whenever $\mathcal C$ is a category with finite coproducts, and likewise for pairs of morphisms $(e,f)$ in $\Delta^{\mathrm{op}}\mathcal C$, where $e$ is a termwise coprojection. Following § 2 in [32], a square in $\Delta^{\mathrm{op}}\mathcal C$ is called an elementary pushout square if it is isomorphic to the pushout square for a pair of morphisms $(e,f)$, where $e$ is a termwise coprojection.

If $\mathcal C$ has finite coproducts, then, for any commutative square $Q$ of the form

we define the object $K_Q$ by the elementary pushout square:
There is a canonically induced morphism $p_Q\colon K_Q\to X$. An important example is the cylinder $\operatorname{cyl}(f)$ of a morphism $f\colon X\to X'$. In terms of the construction above, this is the object associated with the square
By Lemma 2.9 in [32], the natural morphisms $X'\to\operatorname{cyl}(f)$ and $\operatorname{cyl}(f)\to X'$ are mutually inverse homotopy equivalences.

Lemma 4.2. Suppose $\mathcal X$ is a special framed motivic $\Gamma$-space. Then $\mathcal X(\mathbb S,-)$ takes elementary pushout squares in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ to homotopy pushout squares in the stable local model structure on motivic $S^1$-spectra.

Proof. Consider the pushout square in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ with horizontal coprojections:
The associated square of $S^1$-spectra
is a homotopy pushout because by (25) it is stably locally equivalent to the pushout square
By definition, an elementary pushout square is isomorphic to the pushout square of morphisms $(e,f)$, where $e$ is a termwise coprojection. It remains to observe that the geometric realization of a simplicial homotopy pushout square of spectra is a homotopy pushout. This proves Lemma 4.2.

Corollary 4.1. Suppose $\mathcal X$ is a special framed motivic $\Gamma$-space, and

is an elementary pushout square in $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$ of morphisms $(e,f)$, where $e$ is a termwise coprojection. If $\mathcal X(\mathbb S,e)$ is a stable local equivalence of $S^1$-spectra, then so is $\mathcal X(\mathbb S,e')$.

Proof of Theorem 4.1. Let $Q$ denote an elementary Nisnevich square in $\mathrm{Sm}/k$:
By applying the cylinder construction and forming pushouts in $\mathcal M$, we obtain the commutative diagram
Note that $U'_+\to\operatorname{cyl}(U'_+\to X'_+)$ is a termwise coprojection and a projective cofibration between projective cofibrant objects of $\mathcal M$. Thus $s(Q):=\operatorname{cyl}(U'_+\to X'_+)\bigsqcup_{U'_+}\!U_+$ is projective cofibrant (see Corollary 1.1.11 in [33]), and $U_+\to s(Q)$ is a termwise coprojection. Likewise, by applying the cylinder construction to $s(Q)\to X_+$ and setting $t(Q):=\operatorname{cyl}(s(Q)\to X_+)$, we get a projective cofibration
$$ \begin{equation*} \operatorname{cyl}(Q)\colon s(Q)\to t(Q). \end{equation*} \notag $$
Here, $\operatorname{cyl}(Q)$ is a termwise coprojection and a local equivalence in $\mathcal M$.

In the following we let $J_{\mathrm{mot}}=J_{\mathrm{proj}}\cup J_{\mathsf{nis}}\cup J_{\mathbb A^1}$, where

$$ \begin{equation*} \begin{aligned} \, J_{\mathrm{proj}} &= \{\Lambda^{r}[n]_+\wedge U_+\to \Delta[n]_+\wedge U_+\mid U\in\mathrm{Sm}/k,\, n>0,\, 0\leqslant r\leqslant n\}, \\ J_{\mathsf{nis}} &= \biggl\{\Delta[n]_+\wedge s(Q) \bigsqcup_{\partial\Delta[n]_+\wedge s(Q)}\partial\Delta[n]_+\wedge t(Q) \\ &\qquad\qquad \to \Delta[n]_+\wedge t(Q)\biggm| Q \text{ is an elementary Nisnevich square}\biggr\}, \\ J_{\mathbb A^1} &= \biggl\{\Delta[n]_+\wedge U\times\mathbb A^1_+ \bigsqcup_{\partial\Delta[n]_+\wedge U\times\mathbb A^1_+} \partial\Delta[n]_+\wedge \operatorname{cyl}(U\times\mathbb A^1_+\to U_+) \\ &\qquad\qquad \to\Delta[n]_+\wedge\operatorname{cyl} (U\times\mathbb A^1_+\to U_+)\biggm| U\in\mathrm{Sm}/k\biggr\}. \end{aligned} \end{equation*} \notag $$
We note that every map in $J_{\mathrm{mot}}$ is a termwise coprojection. According to Lemma 2.15 in [20], a morphism is a fibration with fibrant codomain in the projective motivic model structure if and only if it has the right lifting property with respect to $J_{\mathrm{mot}}$.

Arguing as in Proposition 4.9 of [3], the functor $\mathcal X(1_+,-)$ maps members of $J_{\mathrm{proj}}$ to local equivalences. We note that $\mathcal X(1_+,-)$ preserves naive simplicial homotopies: if $A$ is a pointed motivic space then $\mathcal X(1_+,\Delta[1]_+\otimes A^{\mathrm{c}})$ is a cylinder object for $\mathcal X(1_+,A^{\mathrm{c}})$. Axiom 4 implies that there is a canonically induced local equivalence

$$ \begin{equation*} \mathcal X(1_+,U\times\mathbb A^1)\to \mathcal X\bigl(1_+,\operatorname{cyl}(U\times\mathbb A^1\to U)\bigr). \end{equation*} \notag $$
Axiom 5 implies the same holds for $\mathcal X(1_+,\operatorname{cyl}(Q))$.

To show that $\mathcal X(1_+,-)$ maps members of $J_{\mathsf{nis}}$ to local equivalences, let us start with a cofibration of simplicial sets $K\hookrightarrow L$ and the induced commutative diagram:

An application of Lemma 4.1 to $a_0=K_+\wedge\operatorname{cyl}(Q)$, shows that the induced morphism $\mathcal X(1_+,a_0)$ is a local equivalence. The same applies to $a_2=L_+\wedge\operatorname{cyl}(Q)$ and $\mathcal X(1_+,a_2)$. Since $\mathcal X$ is very special, Corollary 4.1 shows $\mathcal X(1_+,a_1)$ is a local equivalence. Thus $\mathcal X(1_+,a_3)$ is a local equivalence and our claim for $J_{\mathsf{nis}}$ follows. Likewise, $\mathcal X(1_+,-)$ maps members of $J_{\mathbb A^1}$ to local equivalences.

So far, we have established that $\mathcal X(1_+,-)$ takes members of $J_{\mathrm{mot}}$ to local equivalences. For every motivic equivalence $f\colon A \to B$, the induced morphism $f^{\mathrm{c}}\colon A^{\mathrm{c}} \to B^{\mathrm{c}}$ is also a motivic equivalence. It remains to show the canonical morphism

$$ \begin{equation*} \mathcal X(1_+,f^{\mathrm{c}})\colon \mathcal X(1_+,A^{\mathrm{c}}) \to \mathcal X(1_+,B^{\mathrm{c}}) \end{equation*} \notag $$
is a local equivalence. To that end, we apply the “small object argument” (see Theorem 2.1.14 in [33]).

To begin, we note that all the morphisms in $J_{\mathrm{mot}}$ have finitely presentable (co)domains. For every pointed motivic space $A\in\mathcal M$, let $\alpha\colon A\to \mathcal L A$ be the transfinite composition of the $\aleph_{0}$-sequence:

$$ \begin{equation*} A=E^0\xrightarrow{\alpha_0}E^1\xrightarrow{\alpha_1}E^2 \xrightarrow{\alpha_2}\cdots, \end{equation*} \notag $$
constructed as follows. For $n\geqslant 0$ we let $S_n$ denote the set of all commutative squares
where $g\in J_{\mathrm{mot}}$, and form the pushout
This construction is plainly functorial in $A$. By definition, $\alpha$ is a trivial motivic cofibration in $\mathcal M$ belonging to $J_{\mathrm{mot}}$-cell (see Definition 2.1.9 in [33]).

We claim that the horizontal morphisms in the commutative diagram

are local equivalences. Indeed, Corollary 4.1 shows that $\mathcal X(1_+,-)$ maps the cobase change of a member of $J_{\mathrm{mot}}$ to a local equivalence (here we use the assumption that $\mathcal X$ is very special). Local equivalences are closed under filtered colimits and $\mathcal X(1_+,-)$ preserves filtered colimits, so the same holds for members of $J_{\mathrm{mot}}$-cell. Since ${\mathcal L}(A^{\mathrm{c}})$ and ${\mathcal L}(B^{\mathrm{c}})$ are cofibrant and fibrant, ${\mathcal L}(f^{\mathrm{c}})$ is a homotopy equivalence. As noted above, $\mathcal X(1_+,-)$ preserves naive simplicial homotopies, and therefore, $\mathcal X(1_+,{\mathcal L}(f^{\mathrm{c}}))$ is a homotopy equivalence. Thus, $\mathcal X(1_+,f^{\mathrm{c}})$ is a local equivalence. Theorem 4.1 is proved.

Let $M\mathbb Z$ be the motivic ring spectrum representing integral motivic cohomology in the sense of Voevodsky–Suslin [6]. Up to inversion of the exponential characteristic $e$ of the base field $k$, the highly structured category of $M\mathbb Z$-modules is equivalent to Voevodsky’s derived category of motives (see Theorem 58 in [34], and also Theorem 5.8 in [35]). A crucial part of the proof shows that, for every $U\in\mathrm{Sm}/k$, the natural assembly morphism

$$ \begin{equation*} M\mathbb Z\wedge U_+\to M\mathbb Z\circ(-\wedge U_+) \end{equation*} \notag $$
is an isomorphism in $\mathbf{SH}(k)[1/e]$. For a $\Gamma$-space $F\colon \Gamma^{\mathrm{op}}\to\bf S_\bullet$, the corresponding statement says that the morphism
$$ \begin{equation*} \mathsf{ev}_{S^1}(F)\wedge K \to \mathsf{ev}_{S^1}(F(-\wedge K)) \end{equation*} \notag $$
is a stable equivalence for every pointed simplicial set $K\in\mathbf S_\bullet$ (see Lemma 4.1 in [3]). We show a similar property for special framed motivic $\Gamma$-spaces.

Theorem 4.2. Suppose $k$ is an infinite perfect field of exponential characteristic $e$. Let $U\in\mathrm{Sm}/k$ be such that $U_+$ is strongly dualizable in $\mathbf{SH}(k)$ (for example, $U$ is a smooth projective algebraic variety). Then, for every special framed motivic $\Gamma$-space $\mathcal X$, the natural morphism of bispectra

$$ \begin{equation} \mathsf{ev}_{S^1,\mathbb{G}}(\mathcal X)\wedge U_+= \mathsf{ev}_{\mathbb{G}}\bigl(\mathcal X(\mathbb S,-)\bigr)\wedge U_+ \to \mathsf{ev}_{\mathbb{G}}\bigl(\mathcal X(\mathbb S,-\otimes U)\bigr)= \mathsf{ev}_{S^1,\mathbb{G}}\bigl(\mathcal X(-\otimes U)\bigr) \end{equation} \tag{26} $$
is a stable motivic equivalence. Moreover, for every pointed motivic space $A\in\mathcal M$ the natural morphism of bispectra
$$ \begin{equation} \mathsf{ev}_{S^1,\mathbb G}(\mathcal X)\wedge A^{\mathrm{c}} \to \mathsf{ev}_{S^1,\mathbb G}\bigl(\mathcal X(-\otimes A^{\mathrm{c}})\bigr) \end{equation} \tag{27} $$
is an isomorphism in $\mathbf{SH}(k)[1/e]$.

Proof. Without loss of generality we may assume that $\mathcal X$ is very special motivic $\Gamma$-space (see Remark 3.2). We view $\mathcal X(1_+,-)$ as an $\mathcal M$-enriched functor from $\mathrm{Sm}/k_+$ to $\mathcal M$.

Recall from § 2 the $\mathcal M$-category of finitely presentable motivic spaces $f\mathcal M$. Via an enriched left Kan extension functor the inclusion of $\mathcal M$-categories $\iota\colon \mathrm{Sm}/k_+\hookrightarrow f\mathcal M$ yields the functor

$$ \begin{equation*} \Upsilon \colon [\mathrm{Sm}/k_+,\mathcal M]\to[f\mathcal M,\mathcal M]. \end{equation*} \notag $$
By expressing $\mathcal Y\in[\mathrm{Sm}/k_+,\mathcal M]$ as a coend
$$ \begin{equation*} \mathcal Y=\int^{U\in\mathrm{Sm}/k_+}\mathcal Y(U)\wedge_{\mathcal M}[U,-], \end{equation*} \notag $$
we obtain
$$ \begin{equation*} \Upsilon(\mathcal Y)= \int^{U\in\mathrm{Sm}/k_+}\mathcal Y(U) \wedge_{\mathcal M}[\iota(U),-]. \end{equation*} \notag $$
By construction $\Upsilon(\mathcal Y)(V)=\mathcal Y(V)$ for all $V\in\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$. More generally, we have $\Upsilon(\mathcal Y)(A^{\mathrm{c}})=\mathcal Y(A^{\mathrm{c}})$ for every pointed motivic space $A\in\mathcal M$.

Theorem 4.1 implies that $\Upsilon(\mathcal X(1_+,-))$ maps motivic weak equivalences of projective cofibrant motivic spaces to local equivalences. Owing to Corollary 56 in [34], the $\mathbb G$-evaluation of the assembly morphism

$$ \begin{equation*} \Upsilon\bigl(\mathcal X(1_+,-\otimes\mathbb S)\bigr)\wedge U_+\to \Upsilon\bigl(\mathcal X(1_+,-\otimes\mathbb S\otimes U)\bigr) \end{equation*} \notag $$
is a stable motivic equivalence between motivic $(S^1,\mathbb G)$-bispectra if $U_+$ is strongly dualizable in $\mathbf{SH}(k)$. Here, $\mathcal X(1_+,-\otimes\mathbb S\otimes U)$ is the evaluation at the sphere $\mathbb S$, of the $\Gamma$-space of Lemma 4.1. Since $\Upsilon(\mathcal X(1_+,V))=\mathcal X(1_+,V)$ for all $V\in\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$, the same holds for the $\mathbb G$-evaluation of the morphism
$$ \begin{equation*} \mathcal X(1_+,-\otimes\mathbb S)\wedge U_+\to \mathcal X(1_+,-\otimes\mathbb S\otimes U). \end{equation*} \notag $$

Given $n>0$, let $\mathcal X(S^n,-)$ be the very special framed motivic $\Gamma$-space with sections

$$ \begin{equation*} (k_+,U) \mapsto \mathcal X(S^n\wedge k_+,U). \end{equation*} \notag $$
Replacing $\mathcal X$ with $\mathcal X(S^n,-)$, we deduce the stable motivic equivalence of motivic $(S^1,\mathbb G)$-bispectra
$$ \begin{equation} \mathsf{ev}_{\mathbb{G}}\bigl(\mathcal X(S^n,-\otimes\mathbb S)\bigr) \wedge U_+ \to \mathsf{ev}_{\mathbb{G}} \bigl(\mathcal X(S^n,-\otimes\mathbb S\otimes U)\bigr). \end{equation} \tag{28} $$

Combining (28) with Lemma 4.1 in [3], we obtain the stable motivic equivalences of motivic $(S^1,S^1,\mathbb G)$-trispectra

$$ \begin{equation*} \begin{gathered} \, \mathsf{ev}_{\mathbb{G}}\bigl(\mathcal X(\mathbb S,-\otimes\mathbb S)\bigr) \wedge U_+\to \mathsf{ev}_{\mathbb{G}} \bigl(\mathcal X(\mathbb S,-\otimes\mathbb S\otimes U)\bigr), \\ \mathsf{ev}_{\mathbb{G}}\bigl(\mathcal X(\mathbb S,-)\bigr)\wedge U_+\wedge\mathbb S\to \mathsf{ev}_{\mathbb{G}} \bigl(\mathcal X(\mathbb S,-\otimes U)\bigr)\wedge\mathbb S. \end{gathered} \end{equation*} \notag $$
For the cofibrant replacements of $\mathsf{ev}_{\mathbb{G}}(\mathcal X(\mathbb S,-))\wedge U_+$, $\mathsf{ev}_{\mathbb{G}}(\mathcal X(\mathbb S,-\otimes U))$ in $\mathbf{Sp}_{S^1,\mathbb G}(k)$ we find a stable motivic equivalence between cofibrant motivic $(S^1,S^1,\mathbb G)$-trispectra
$$ \begin{equation*} \bigl(\mathsf{ev}_{\mathbb{G}}(\mathcal X(\mathbb S,-))\wedge U_+\bigr)^{\mathrm{c}}\wedge\mathbb S \to\mathsf{ev}_{\mathbb{G}} \bigl(\mathcal X(\mathbb S,-\otimes U)\bigr)^{\mathrm{c}}\wedge\mathbb S. \end{equation*} \notag $$
Since $-\wedge S^1$ is a Quillen auto-equivalence on $\mathbf{Sp}_{S^1,\mathbb G}(k)$, we deduce the stable motivic equivalence
$$ \begin{equation*} \bigl(\mathsf{ev}_{\mathbb{G}}(\mathcal X(\mathbb S,-))\wedge U_+\bigr)^{\mathrm{c}} \to \mathsf{ev}_{\mathbb{G}} \bigl(\mathcal X(\mathbb S,-\otimes U)\bigr)^{\mathrm{c}} \end{equation*} \notag $$
between cofibrant motivic $(S^1,\mathbb G)$-bispectra (see also Theorem 5.1 in [29]). Therefore, (26) is a stable motivic equivalence.

Recall that $U_+$ is strongly dualizable in $\mathbf{SH}(k)[1/e]$ for every $U\in\mathrm{Sm}/k$ (see Appendix B in [36]). The previous arguments show that (26) is an $e^{-1}$-stable motivic equivalence Indeed, even though Corollary 56 in [34] is concerned with the stable motivic model structure on motivic functors, it readily extends to the $e^{-1}$-stable model structure.

Finally, when $A\in\mathcal M$, recall that $A^{\mathrm{c}}$ is a sequential colimit of simplicial schemes from $\Delta^{\mathrm{op}}\mathrm{Sm}/k_+$. Since the geometric realization functor preserves $e^{-1}$-stable motivic equivalences, we conclude that (27) is an isomorphism in $\mathbf{SH}(k)[1/e]$. Theorem 4.2 is proved.


Bibliography

1. G. Segal, “Categories and cohomology theories”, Topology, 13:3 (1974), 293–312  crossref  mathscinet  zmath
2. J. M. Boardman and R. M. Vogt, Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math., 347, Springer-Verlag, Berlin–New York, 1973  crossref  mathscinet  zmath; Russian transl. Mir, Moscow, 1977  mathscinet
3. A. K. Bousfield and E. M. Friedlander, “Homotopy theory of $\Gamma$-spaces, spectra, and bisimplicial sets”, Geometric applications of homotopy theory (Evanston, IL 1977), v. 2, Lecture Notes in Math., 658, Springer-Verlag, Berlin, 1978, 80–130  crossref  mathscinet  zmath
4. B. I. Dundas, T. Goodwillie, and R. McCarthy, The local structure of algebraic K-theory, Algebr. Appl., 18, Springer-Verlag London, Ltd., London, 2013  crossref  mathscinet  zmath
5. F. Morel and V. Voevodsky, “$\mathbf A^1$-homotopy theory of schemes”, Inst. Hautes Études Sci. Publ. Math., 90 (1999), 45–143  crossref  mathscinet  zmath
6. V. Voevodsky, “$\mathbb A^1$-homotopy theory”, Proceedings of the international congress of mathematicians, Vol. I (Berlin 1998), Doc. Math., Extra Vol. 1 (1998), 579–604  mathscinet  zmath
7. V. Voevodsky, Notes on framed correspondences, 2001 www.math.ias.edu/vladimir/publications
8. G. Garkusha and I. Panin, “Framed motives of algebraic varieties (after V. Voevodsky)”, J. Amer. Math. Soc., 34:1 (2021), 261–313  crossref  mathscinet  zmath
9. B. I. Dundas, M. Levine, P. A. Østvær, O. Röndigs, and V. Voevodsky, Motivic homotopy theory, Lectures from the summer school held in Nordfjordeid, August 2002, Universitext, Springer-Verlag, Berlin, 2007  crossref  mathscinet  zmath
10. J. F. Jardine, Local homotopy theory, Springer Monogr. Math., Springer, New York, 2015  crossref  mathscinet  zmath
11. A. A. Suslin, “On the Grayson spectral sequence”, Number theory, algebra, and algebraic geometry, Collected papers. Dedicated to the 80th birthday of academician Igor' Rostislavovich Shafarevich, Trudy Mat. Inst. Steklova, 241, Nauka, MAIK “Nauka/Interperiodika”, Moscow, 2003, 218–253  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 241 (2003), 202–237
12. T. Bachmann and J. Fasel, On the effectivity of spectra representing motivic cohomology theories, arXiv: 1710.00594v3
13. G. Garkusha and I. Panin, The triangulated categories of framed bispectra and framed motives, arXiv: 1809.08006
14. M. Spitzweck and P. A. Østvær, “Motivic twisted $K$-theory”, Algebr. Geom. Topol., 12:1 (2012), 565–599  crossref  mathscinet  zmath
15. A. Ananyevskiy, G. Garkusha, and I. Panin, “Cancellation theorem for framed motives of algebraic varieties”, Adv. Math., 383 (2021), 107681  crossref  mathscinet  zmath
16. G. Garkusha and I. Panin, “Homotopy invariant presheaves with framed transfers”, Camb. J. Math., 8:1 (2020), 1–94  crossref  mathscinet  zmath
17. G. Garkusha, A. Neshitov, and I. Panin, “Framed motives of relative motivic spheres”, Trans. Amer. Math. Soc., 374:7 (2021), 5131–5161  crossref  mathscinet  zmath
18. E. Elmanto, M. Hoyois, A. A. Khan, V. Sosnilo, and M. Yakerson, “Motivic infinite loop spaces”, Camb. J. Math., 9:2 (2021), 431–549  crossref  mathscinet  zmath
19. B. A. Blander, “Local projective model structures on simplicial presheaves”, K-Theory, 24:3 (2001), 283–301  crossref  mathscinet  zmath
20. B. I. Dundas, O. Röndigs, and P. A. Østvær, “Motivic functors”, Doc. Math., 8 (2003), 489–525  mathscinet  zmath
21. B. I. Dundas, O. Röndigs, and P. A. Østvær, “Enriched functors and stable homotopy theory”, Doc. Math., 8 (2003), 409–488  mathscinet  zmath
22. B. Day, “On closed categories of functors”, Reports of the midwest category seminar  IV, Lecture Notes in Math., 137, Springer, Berlin, 1970, 1–38  crossref  mathscinet  zmath
23. G. Garkusha and A. Neshitov, Fibrant resolutions for motivic Thom spectra, arXiv: 1804.07621
24. I. Panin and C. Walter, “On the algebraic cobordism spectra $\mathbf{MSL}$ and $\mathbf{MSp}$”, Algebra i Analiz, 34:1 (2022), 144–187  mathnet
25. G. Garkusha, “Reconstructing rational stable motivic homotopy theory”, Compos. Math., 155:7 (2019), 1424–1443  crossref  mathscinet  zmath
26. B. Calmès and J. Fasel, The category of finite $MW$-correspondences, arXiv: 1412.2989v2
27. V. Voevodsky, “Triangulated category of motives over a field”, Cycles, transfers and motivic homology theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238  crossref  mathscinet  zmath
28. M. E. Walker, Motivic complexes and the $K$-theory of automorphisms, PhD Thesis, Univ. of Illinois, Urbana-Champaign, 1996  mathscinet
29. M. Hovey, “Spectra and symmetric spectra in general model categories”, J. Pure Appl. Algebra, 165:1 (2001), 63–127  crossref  mathscinet  zmath
30. T. Bachmann, “The generalized slices of Hermitian $K$-theory”, J. Topol., 10:4 (2017), 1124–1144  crossref  mathscinet  zmath
31. A. Ananyevskiy, M. Levine, and I. Panin, “Witt sheaves and the $\eta$-inverted sphere spectrum”, J. Topol., 10:2 (2017), 370–385  crossref  mathscinet  zmath
32. V. Voevodsky, “Simplicial radditive functors”, J. $K$-Theory, 5:2 (2010), 201–244  crossref  mathscinet  zmath
33. M. Hovey, Model categories, Math. Surveys Monogr., 63, Amer. Math. Soc., Providence, RI, 1999  crossref  mathscinet  zmath
34. O. Röndigs and P. A. Østvær, “Modules over motivic cohomology”, Adv. Math., 219:2 (2008), 689–727  crossref  mathscinet  zmath
35. M. Hoyois, S. Kelly, and P. A. Østvær, “The motivic Steenrod algebra in positive characteristic”, J. Eur. Math. Soc. (JEMS), 19:12 (2017), 3813–3849  crossref  mathscinet  zmath
36. M. Levine, Yaping Yang, Gufang Zhao, and J. Riou, “Algebraic elliptic cohomology theory and flops. I”, Math. Ann., 375:3-4 (2019), 1823–1855  crossref  mathscinet  zmath

Citation: G. A. Garkusha, I. A. Panin, P. Østvær, “Framed motivic $\Gamma$-spaces”, Izv. RAN. Ser. Mat., 87:1 (2023), 3–32; Izv. Math., 87:1 (2023), 1–28
Citation in format AMSBIB
\Bibitem{GarPanOst23}
\by G.~A.~Garkusha, I.~A.~Panin, P.~{\O}stv{\ae}r
\paper Framed motivic $\Gamma$-spaces
\jour Izv. RAN. Ser. Mat.
\yr 2023
\vol 87
\issue 1
\pages 3--32
\mathnet{http://mi.mathnet.ru/im9246}
\crossref{https://doi.org/10.4213/im9246}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4634753}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2023IzMat..87....1G}
\transl
\jour Izv. Math.
\yr 2023
\vol 87
\issue 1
\pages 1--28
\crossref{https://doi.org/10.4213/im9246e}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=001054276700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168147267}
Linking options:
  • https://www.mathnet.ru/eng/im9246
  • https://doi.org/10.4213/im9246e
  • https://www.mathnet.ru/eng/im/v87/i1/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:491
    Russian version PDF:69
    English version PDF:103
    Russian version HTML:262
    English version HTML:169
    References:61
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024