Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2022, Volume 86, Issue 2, Pages 291–333
DOI: https://doi.org/10.1070/IM9073
(Mi im9073)
 

This article is cited in 1 scientific paper (total in 1 paper)

The generalized Plücker–Klein map

V. A. Krasnov

P.G. Demidov Yaroslavl State University
References:
Abstract: The intersection of two quadrics is called a biquadric. If we mark a non-singular quadric in the pencil of quadrics through a given biquadric, then the given biquadric is called a marked biquadric. In the classical papers of Plücker and Klein, a Kummer surface was canonically associated with every three-dimensional marked biquadric (that is, with a quadratic line complex provided that the Plücker–Klein quadric is marked). In Reid's thesis, this correspondence was generalized to odd-dimensional marked biquadrics of arbitrary dimension $\geqslant 3$. In this case, a Kummer variety of dimension $g$ corresponds to every biquadric of dimension $2g-1$. Reid only constructed the generalized Plücker–Klein correspondence. This map was not studied later. The present paper is devoted to a partial solution of the problem of creating the corresponding theory.
Keywords: Plücker–Klein map, quadric, pencil of quadrics, biquadric, marked biquadric, cosingular biquadrics, Klein variety.
Received: 22.06.2020
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2022, Volume 86, Issue 2, Pages 80–127
DOI: https://doi.org/10.4213/im9073
Bibliographic databases:
Document Type: Article
UDC: 512.7
MSC: 14P25, 14N25
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “The generalized Plücker–Klein map”, Izv. RAN. Ser. Mat., 86:2 (2022), 80–127; Izv. Math., 86:2 (2022), 291–333
Citation in format AMSBIB
\Bibitem{Kra22}
\by V.~A.~Krasnov
\paper The generalized Pl\" ucker--Klein map
\jour Izv. RAN. Ser. Mat.
\yr 2022
\vol 86
\issue 2
\pages 80--127
\mathnet{http://mi.mathnet.ru/im9073}
\crossref{https://doi.org/10.4213/im9073}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4701680}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2022IzMat..86..291K}
\transl
\jour Izv. Math.
\yr 2022
\vol 86
\issue 2
\pages 291--333
\crossref{https://doi.org/10.1070/IM9073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000797202100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85131016274}
Linking options:
  • https://www.mathnet.ru/eng/im9073
  • https://doi.org/10.1070/IM9073
  • https://www.mathnet.ru/eng/im/v86/i2/p80
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:547
    Russian version PDF:36
    English version PDF:36
    Russian version HTML:253
    References:58
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024