Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 5, Pages 910–929
DOI: https://doi.org/10.1070/IM8945
(Mi im8945)
 

This article is cited in 3 scientific papers (total in 3 papers)

Subdivision schemes on the dyadic half-line

M. A. Karapetyants

Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region
References:
Abstract: We consider subdivision schemes, which are used for the approximation of functions and generation of curves on the dyadic half-line. In the classical case of functions on the real line, the theory of subdivision schemes is widely known because of its applications in constructive approximation theory and signal processing as well as for generating fractal curves and surfaces. We define and study subdivision schemes on the dyadic half-line (the positive half-line endowed with the standard Lebesgue measure and the digit-wise binary addition operation), where the role of exponentials is played by Walsh functions.
We obtain necessary and sufficient conditions for the convergence of subdivision schemes in terms of the spectral properties of matrices and in terms of the smoothness of solutions of the corresponding refinement equation. We also investigate the problem of convergence of subdivision schemes with non-negative coefficients. We obtain an explicit criterion for the convergence of algorithms with four coefficients. As an auxiliary result, we define fractal curves on the dyadic half-line and prove a formula for their smoothness. The paper contains various illustrative examples and numerical results.
Keywords: subdivision schemes, dyadic half-line, fractal curves, smoothness of fractal curves, spectral properties of matrices.
Received: 19.06.2019
Revised: 24.09.2019
Bibliographic databases:
Document Type: Article
UDC: 517.965
MSC: 22E35, 42A24, 65T60
Language: English
Original paper language: Russian
Citation: M. A. Karapetyants, “Subdivision schemes on the dyadic half-line”, Izv. Math., 84:5 (2020), 910–929
Citation in format AMSBIB
\Bibitem{Kar20}
\by M.~A.~Karapetyants
\paper Subdivision schemes on the dyadic half-line
\jour Izv. Math.
\yr 2020
\vol 84
\issue 5
\pages 910--929
\mathnet{http://mi.mathnet.ru//eng/im8945}
\crossref{https://doi.org/10.1070/IM8945}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153660}
\zmath{https://zbmath.org/?q=an:1475.46071}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..910K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586487100001}
\elib{https://elibrary.ru/item.asp?id=45174696}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095114363}
Linking options:
  • https://www.mathnet.ru/eng/im8945
  • https://doi.org/10.1070/IM8945
  • https://www.mathnet.ru/eng/im/v84/i5/p98
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:293
    Russian version PDF:45
    English version PDF:36
    References:40
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024