Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2021, Volume 85, Issue 6, Pages 1181–1219
DOI: https://doi.org/10.1070/IM8937
(Mi im8937)
 

This article is cited in 7 scientific papers (total in 7 papers)

Models of set theory in which the separation theorem fails

V. G. Kanovei, V. A. Lyubetsky

Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
References:
Abstract: We use a finite-support product of Jensen-minimal forcings to define a model of set theory in which the separation theorem fails for the projective classes $\mathbf{\Sigma}^1_n$ and $\mathbf{\Pi}^1_n$, for a given $n\geqslant3$.
Keywords: separability, models, Jensen forcing, iteration.
Funding agency Grant number
Russian Foundation for Basic Research 20-01-00670
This paper was written with the support of RFBR (grant no. 20-01-00670).
Received: 28.05.2019
Revised: 21.07.2020
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2021, Volume 85, Issue 6, Pages 164–204
DOI: https://doi.org/10.4213/im8937
Bibliographic databases:
Document Type: Article
UDC: 510.225
MSC: 03E15, 03E35
Language: English
Original paper language: Russian
Citation: V. G. Kanovei, V. A. Lyubetsky, “Models of set theory in which the separation theorem fails”, Izv. RAN. Ser. Mat., 85:6 (2021), 164–204; Izv. Math., 85:6 (2021), 1181–1219
Citation in format AMSBIB
\Bibitem{KanLyu21}
\by V.~G.~Kanovei, V.~A.~Lyubetsky
\paper Models of set theory in which the separation theorem fails
\jour Izv. RAN. Ser. Mat.
\yr 2021
\vol 85
\issue 6
\pages 164--204
\mathnet{http://mi.mathnet.ru/im8937}
\crossref{https://doi.org/10.4213/im8937}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021IzMat..85.1181K}
\transl
\jour Izv. Math.
\yr 2021
\vol 85
\issue 6
\pages 1181--1219
\crossref{https://doi.org/10.1070/IM8937}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000745285700001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85097931594}
Linking options:
  • https://www.mathnet.ru/eng/im8937
  • https://doi.org/10.1070/IM8937
  • https://www.mathnet.ru/eng/im/v85/i6/p164
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:654
    Russian version PDF:95
    English version PDF:38
    Russian version HTML:518
    References:34
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024