Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 6, Pages 1081–1136
DOI: https://doi.org/10.1070/IM8927
(Mi im8927)
 

This article is cited in 6 scientific papers (total in 6 papers)

Massey products, toric topology and combinatorics of polytopes

V. M. Buchstabera, I. Yu. Limonchenkob

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b National Research University "Higher School of Economics", Moscow
References:
Abstract: In this paper we introduce a direct family of simple polytopes $P^{0}\,{\subset}\, P^{1}\,{\subset}{\kern1pt}{\cdots}$ such that for any $2\,{\leq}\,k\,{\leq}\,n$ there are non-trivial strictly defined Massey products of order $k$ in the cohomology rings of their moment-angle manifolds $\mathcal Z_{P^n}$. We prove that the direct sequence of manifolds $*\subset S^{3}\hookrightarrow\dots\hookrightarrow\mathcal Z_{P^n}\hookrightarrow\mathcal Z_{P^{n+1}}\,{\hookrightarrow}\,{\cdots}$ has the following properties: every manifold $\mathcal Z_{P^n}$ is a retract of $\mathcal Z_{P^{n+1}}$, and one has inverse sequences in cohomology (over $n$ and $k$, where $k\to\infty$ as $n\to\infty$) of the Massey products constructed. As an application we get that there are non-trivial differentials $d_k$, for arbitrarily large $k$ as $n\to\infty$, in the Eilenberg–Moore spectral sequence connecting the rings $H^*(\Omega X)$ and $H^*(X)$ with coefficients in a field, where $X=\mathcal Z_{P^n}$.
Keywords: polyhedral product, moment-angle manifold, Massey product, Lusternik–Schnirelmann category, polytope family, flag polytope, generating series, nestohedron, graph-associahedron.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00671
18-51-50005
Ministry of Education and Science of the Russian Federation 5-100
The research of the first author was supported by the Russian Foundation for Basic Research (grants nos. 17-01-00671 and 18-51-50005). The research of the second author was carried out within the University Basic Research Programme of the Higher School of Economics and was funded by the Russian Academic Excellence Project ‘5-100’.
Received: 24.04.2019
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 6, Pages 3–62
DOI: https://doi.org/10.4213/im8927
Bibliographic databases:
Document Type: Article
UDC: 515.143
MSC: Primary 13F55, 14M25, 55S30; Secondary 52B11
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, I. Yu. Limonchenko, “Massey products, toric topology and combinatorics of polytopes”, Izv. RAN. Ser. Mat., 83:6 (2019), 3–62; Izv. Math., 83:6 (2019), 1081–1136
Citation in format AMSBIB
\Bibitem{BucLim19}
\by V.~M.~Buchstaber, I.~Yu.~Limonchenko
\paper Massey products, toric topology and combinatorics of polytopes
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 6
\pages 3--62
\mathnet{http://mi.mathnet.ru/im8927}
\crossref{https://doi.org/10.4213/im8927}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3954303}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83.1081B}
\elib{https://elibrary.ru/item.asp?id=43264249}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 6
\pages 1081--1136
\crossref{https://doi.org/10.1070/IM8927}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510720200001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082847271}
Linking options:
  • https://www.mathnet.ru/eng/im8927
  • https://doi.org/10.1070/IM8927
  • https://www.mathnet.ru/eng/im/v83/i6/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:553
    Russian version PDF:81
    English version PDF:62
    References:47
    First page:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024