Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 4, Pages 627–658
DOI: https://doi.org/10.1070/IM8910
(Mi im8910)
 

On orthogonal projections of Nöbeling spaces

S. M. Ageev

Belarusian State University
References:
Abstract: Suppose that $0\le k<\infty$. We prove that there is a dense open subset of the Grassmann space $\operatorname{Gr}(2k+1,m)$ such that the orthogonal projection of the standard Nöbeling space $N^m_k$ (which lies in $\mathbb R^m$ for sufficiently large $m$) to every $(2k+1)$-dimensional plane in this subset is $k$-soft and possesses the strong $k$-universal property with respect to Polish spaces. Every such orthogonal projection is a natural counterpart of the standard Nöbeling space for the category of maps.
Keywords: Nöbeling space, Dranishnikov and Chigogidze resolutions, strong fibrewise $k$-universal property, filtered finite-dimensional selection theorem, $\operatorname{AE}(k)$-space.
Funding agency Grant number
Ministry of Education of the Republic of Belarus
This paper was written with the partial support of a~grant from the Ministry of~Education of~the Belarusian Republic.
Received: 02.03.2019
Revised: 01.07.2019
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2020, Volume 84, Issue 4, Pages 5–40
DOI: https://doi.org/10.4213/im8910
Bibliographic databases:
Document Type: Article
UDC: 515.126.83+515.124.62
Language: English
Original paper language: Russian
Citation: S. M. Ageev, “On orthogonal projections of Nöbeling spaces”, Izv. RAN. Ser. Mat., 84:4 (2020), 5–40; Izv. Math., 84:4 (2020), 627–658
Citation in format AMSBIB
\Bibitem{Age20}
\by S.~M.~Ageev
\paper On orthogonal projections of N\"{o}beling spaces
\jour Izv. RAN. Ser. Mat.
\yr 2020
\vol 84
\issue 4
\pages 5--40
\mathnet{http://mi.mathnet.ru/im8910}
\crossref{https://doi.org/10.4213/im8910}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..627A}
\elib{https://elibrary.ru/item.asp?id=45244064}
\transl
\jour Izv. Math.
\yr 2020
\vol 84
\issue 4
\pages 627--658
\crossref{https://doi.org/10.1070/IM8910}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000568335300001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85092232408}
Linking options:
  • https://www.mathnet.ru/eng/im8910
  • https://doi.org/10.1070/IM8910
  • https://www.mathnet.ru/eng/im/v84/i4/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:333
    Russian version PDF:44
    English version PDF:24
    References:51
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024