Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 5, Pages 985–1025
DOI: https://doi.org/10.1070/IM1996v060n05ABEH000089
(Mi im89)
 

This article is cited in 2 scientific papers (total in 2 papers)

Methods of approximate reconstruction of functions defined on chaotic lattices

O. V. Matveev
References:
Abstract: In this article we consider methods of reconstructing functions of $n$ variables from their values at the points of a chaotic lattice providing an error of the best order in the approximation of functions $f$ and their derivatives of order $l$ in $L_q(\Omega)$ in the class $\mathscr W=\{f\in W_p^k(\Omega):\|D^kf\|_{L_p(\Omega )}\leqslant 1\}$ and classes of $h$-lattices us well as in $\mathscr W$ for a fixed lattice. We obtain methods of interpolation by means of smooth piecewise polynomial functions having the specified properties. The order of computational complexity is estimated for these methods.
Received: 14.06.1994
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1996, Volume 60, Issue 5, Pages 111–156
DOI: https://doi.org/10.4213/im89
Bibliographic databases:
MSC: 41A10, 41A15, 41A05
Language: English
Original paper language: Russian
Citation: O. V. Matveev, “Methods of approximate reconstruction of functions defined on chaotic lattices”, Izv. RAN. Ser. Mat., 60:5 (1996), 111–156; Izv. Math., 60:5 (1996), 985–1025
Citation in format AMSBIB
\Bibitem{Mat96}
\by O.~V.~Matveev
\paper Methods of approximate reconstruction of functions defined on chaotic lattices
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 5
\pages 111--156
\mathnet{http://mi.mathnet.ru/im89}
\crossref{https://doi.org/10.4213/im89}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1427398}
\zmath{https://zbmath.org/?q=an:0883.41007}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 5
\pages 985--1025
\crossref{https://doi.org/10.1070/IM1996v060n05ABEH000089}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WN95300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0008138463}
Linking options:
  • https://www.mathnet.ru/eng/im89
  • https://doi.org/10.1070/IM1996v060n05ABEH000089
  • https://www.mathnet.ru/eng/im/v60/i5/p111
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:563
    Russian version PDF:249
    English version PDF:23
    References:98
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024