Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 2, Pages 324–347
DOI: https://doi.org/10.1070/IM8894
(Mi im8894)
 

This article is cited in 5 scientific papers (total in 5 papers)

Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank

B. Sh. Kulpeshovabc

a Kazakh-British Technical University
b Institute of Mathematics and Mathematical Modeling, Ministry of Education and Science, Republic of Kazakhstan
c Novosibirsk State Technical University
References:
Abstract: We prove that weakly $o$-minimal theories of finite convexity rank having less than $2^{\omega}$ countable models are binary. Our main result is the confirmation of Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank.
Keywords: weak $o$-minimality, Vaught's conjecture, countable model, convexity rank, binarity.
Funding agency Grant number
Комитет науки Министерства образования и науки Республики Казахстан АР05132546
This research was supported by the Committee of Science in Education and the Science Ministry of the Republic of Kazakhstan (grant no. AP05132546).
Received: 13.01.2019
Bibliographic databases:
Document Type: Article
UDC: 510.67
MSC: Primary 03C64; Secondary 03C15, 03C07, 03C50
Language: English
Original paper language: Russian
Citation: B. Sh. Kulpeshov, “Vaught's conjecture for weakly $o$-minimal theories of finite convexity rank”, Izv. Math., 84:2 (2020), 324–347
Citation in format AMSBIB
\Bibitem{Kul20}
\by B.~Sh.~Kulpeshov
\paper Vaught's conjecture for weakly $o$-minimal theories of~finite convexity rank
\jour Izv. Math.
\yr 2020
\vol 84
\issue 2
\pages 324--347
\mathnet{http://mi.mathnet.ru//eng/im8894}
\crossref{https://doi.org/10.1070/IM8894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4081951}
\zmath{https://zbmath.org/?q=an:1481.03023}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..324K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000530294100001}
\elib{https://elibrary.ru/item.asp?id=43299660}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085879559}
Linking options:
  • https://www.mathnet.ru/eng/im8894
  • https://doi.org/10.1070/IM8894
  • https://www.mathnet.ru/eng/im/v84/i2/p126
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:335
    Russian version PDF:41
    English version PDF:28
    References:31
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024