Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 5, Pages 930–959
DOI: https://doi.org/10.1070/IM8880
(Mi im8880)
 

This article is cited in 4 scientific papers (total in 4 papers)

Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source

M. O. Korpusovab

a Lomonosov Moscow State University
b Peoples' Friendship University of Russia, Moscow
References:
Abstract: We consider an abstract Cauchy problem with non-linear operator coefficients and prove the existence of a unique non-extendable classical solution. Under certain sufficient close-to-necessary conditions, we obtain finite-time blow-up conditions and upper and lower bounds for the blow-up time. Moreover, under certain sufficient close-to-necessary conditions, we obtain a result on the existence of a global-in-time solution independently of the size of the initial functions.
Keywords: non-linear Sobolev-type equations, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 5-100
This paper was written with the support of the PFUR Programme ‘5-100’.
Received: 05.11.2018
Revised: 19.03.2019
Bibliographic databases:
Document Type: Article
UDC: 517.538
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, “Blow-up and global solubility in the classical sense of the Cauchy problem for a formally hyperbolic equation with a non-coercive source”, Izv. Math., 84:5 (2020), 930–959
Citation in format AMSBIB
\Bibitem{Kor20}
\by M.~O.~Korpusov
\paper Blow-up and global solubility in the classical~sense of~the~Cauchy~problem~for~a~formally~hyperbolic~equation with a~non-coercive source
\jour Izv. Math.
\yr 2020
\vol 84
\issue 5
\pages 930--959
\mathnet{http://mi.mathnet.ru//eng/im8880}
\crossref{https://doi.org/10.1070/IM8880}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153661}
\zmath{https://zbmath.org/?q=an:1452.35048}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84..930K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000586525400001}
\elib{https://elibrary.ru/item.asp?id=45172635}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85095129668}
Linking options:
  • https://www.mathnet.ru/eng/im8880
  • https://doi.org/10.1070/IM8880
  • https://www.mathnet.ru/eng/im/v84/i5/p119
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:318
    Russian version PDF:59
    English version PDF:17
    References:31
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024