Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2020, Volume 84, Issue 1, Pages 52–94
DOI: https://doi.org/10.1070/IM8879
(Mi im8879)
 

This article is cited in 10 scientific papers (total in 10 papers)

Two-step sub-Lorentzian structures and graph surfaces

M. B. Karmanova

Novosibirsk State University
References:
Abstract: We establish an area formula for graph mappings on two-step sub-Lorentzian structures with an arbitrary number of spatial and temporal directions. In a particular case, we consider an alternative approach that requires no additional smoothness of the mapping from which the graph is constructed.
Keywords: multi-dimensional sub-Lorentzian structure, Lipschitz mapping, intrinsic basis, intrinsic measure, area formula.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 1.3087.2017/4.6
This publication was carried out with the financial support of the Ministry of Science and Education of Russian Federation (grant no 1.3087.2017/4.6).
Received: 05.11.2018
Revised: 20.11.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2020, Volume 84, Issue 1, Pages 60–104
DOI: https://doi.org/10.4213/im8879
Bibliographic databases:
Document Type: Article
UDC: 517.518.1+514.747
MSC: Primary 53C17; Secondary 53C50
Language: English
Original paper language: Russian
Citation: M. B. Karmanova, “Two-step sub-Lorentzian structures and graph surfaces”, Izv. RAN. Ser. Mat., 84:1 (2020), 60–104; Izv. Math., 84:1 (2020), 52–94
Citation in format AMSBIB
\Bibitem{Kar20}
\by M.~B.~Karmanova
\paper Two-step sub-Lorentzian structures and graph surfaces
\jour Izv. RAN. Ser. Mat.
\yr 2020
\vol 84
\issue 1
\pages 60--104
\mathnet{http://mi.mathnet.ru/im8879}
\crossref{https://doi.org/10.4213/im8879}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4069999}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020IzMat..84...52K}
\elib{https://elibrary.ru/item.asp?id=43291975}
\transl
\jour Izv. Math.
\yr 2020
\vol 84
\issue 1
\pages 52--94
\crossref{https://doi.org/10.1070/IM8879}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000522948600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85085088401}
Linking options:
  • https://www.mathnet.ru/eng/im8879
  • https://doi.org/10.1070/IM8879
  • https://www.mathnet.ru/eng/im/v84/i1/p60
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:410
    Russian version PDF:89
    English version PDF:25
    References:57
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024