Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 42, Issue 1, Pages 1–26
DOI: https://doi.org/10.1070/IM1994v042n01ABEH001525
(Mi im884)
 

This article is cited in 13 scientific papers (total in 13 papers)

Generalized bitangent Caratheodory–Nevanlinna–Pick problem, and $(j,J_0)$-inner matrix-valued functions

D. Z. Arov
References:
Abstract: This paper is a study of the problem of describing holomorphic $n\times n$ matrix-valued functions $c(z)$ on the unit disk $K$ with $\operatorname{Rec}(z)\geqslant 0$ (the Caratheodory class $\mathbf C_n$) such that $b_1^{-1}(c-c_0)b_2^{-1}\in\mathscr D_n$, where $b_1$, $b_2$, and $c_0$ are particular matrix-valued functions with $b_1$ and $b_2$ inner and $c_0$ in $\mathbf C_n$, and $\mathscr D_n$ is the Smirnov class of matrix-valued functions of bounded type on $K$. The matrix extrapolation problems of Caratheodory, Nevanlinna–Pick, and M. G. Krein reduce to this problem for special $b_1$ and $b_2$, as do even the tangent and $*$-tangent problems when there is extrapolation data for $c(z)$ and $c^*(z)$ not on the whole Euclidean space $C^n$ but only on chains of its subspaces. In the completely indeterminate case the solution set of the problem is obtained as the image of the class $B_n$ of holomorphic contractive $n\times n$ matrix-valued functions on $K$ under a linear fractional transformation with $(j,J_0)$-inner matrix-valued function $A(z)=[a_{ik}(z)]_1^2$ of coefficients on $K$. The $A(z)$ arising in this way form a class of regular $(j,J_0)$ -inner matrix-valued functions whose singularities appear to be determined by the singularities of $b_1$ and $b_2$. The general results are applied to Krein's problems of extension of helical and positive-definite matrix-valued functions from a closed interval.
Received: 28.11.1991
Bibliographic databases:
UDC: 517.5
MSC: Primary 30E05, 30D05, 30D50; Secondary 47A56, 47A57, 15A22
Language: English
Original paper language: Russian
Citation: D. Z. Arov, “Generalized bitangent Caratheodory–Nevanlinna–Pick problem, and $(j,J_0)$-inner matrix-valued functions”, Russian Acad. Sci. Izv. Math., 42:1 (1994), 1–26
Citation in format AMSBIB
\Bibitem{Aro93}
\by D.~Z.~Arov
\paper Generalized bitangent Caratheodory--Nevanlinna--Pick problem, and $(j,J_0)$-inner
matrix-valued functions
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 42
\issue 1
\pages 1--26
\mathnet{http://mi.mathnet.ru//eng/im884}
\crossref{https://doi.org/10.1070/IM1994v042n01ABEH001525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1220579}
\zmath{https://zbmath.org/?q=an:0797.30030}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..42....1A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994NH32100001}
Linking options:
  • https://www.mathnet.ru/eng/im884
  • https://doi.org/10.1070/IM1994v042n01ABEH001525
  • https://www.mathnet.ru/eng/im/v57/i1/p3
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:376
    Russian version PDF:106
    English version PDF:4
    References:52
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024