Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 4, Pages 731–742
DOI: https://doi.org/10.1070/IM8823
(Mi im8823)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the nonsymplectic involutions of the Hilbert square of a K3 surface

S. Boissiièrea, A. Cattaneob, D. G. Markushevichc, A. Sartia

a Université de Poitiers, Laboratoire de Mathématiques et Applications, France
b Institut Camille Jordan, Université Claude Bernard Lyon 1, France
c Université de Lille, Laboratoire Paul Painlevé, France
References:
Abstract: We investigate the interplay between the moduli spaces of ample $\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$ and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic involution with invariant lattice of rank one. In particular, we describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.
Keywords: irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.
Funding agency Grant number
Agence Nationale de la Recherche ANR-10-LABX-0070
ANR-11-LABX-0007-01
ANR-11-IDEX-0007
A. Cattaneo is supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the programme “Investissements d'Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR). D. G. Markushevich was supported in part by the Labex CEMPI (ANR-11-LABX-0007-01).
Received: 08.06.2018
Revised: 22.10.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 4, Pages 86–99
DOI: https://doi.org/10.4213/im8823
Bibliographic databases:
Document Type: Article
UDC: 512.721+512.774.4+512.76+515.177.4
MSC: Primary 14C05; Secondary 14J50, 14J28
Language: English
Original paper language: Russian
Citation: S. Boissiière, A. Cattaneo, D. G. Markushevich, A. Sarti, “On the nonsymplectic involutions of the Hilbert square of a K3 surface”, Izv. RAN. Ser. Mat., 83:4 (2019), 86–99; Izv. Math., 83:4 (2019), 731–742
Citation in format AMSBIB
\Bibitem{BoiCatMar19}
\by S.~Boissii\`ere, A.~Cattaneo, D.~G.~Markushevich, A.~Sarti
\paper On the nonsymplectic involutions of the Hilbert square of a K3 surface
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 4
\pages 86--99
\mathnet{http://mi.mathnet.ru/im8823}
\crossref{https://doi.org/10.4213/im8823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985691}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..731B}
\elib{https://elibrary.ru/item.asp?id=38590297}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 4
\pages 731--742
\crossref{https://doi.org/10.1070/IM8823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487318500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074894516}
Linking options:
  • https://www.mathnet.ru/eng/im8823
  • https://doi.org/10.1070/IM8823
  • https://www.mathnet.ru/eng/im/v83/i4/p86
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:296
    Russian version PDF:35
    English version PDF:26
    References:39
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024