|
This article is cited in 3 scientific papers (total in 3 papers)
On the nonsymplectic involutions of the Hilbert square of a K3 surface
S. Boissiièrea, A. Cattaneob, D. G. Markushevichc, A. Sartia a Université de Poitiers, Laboratoire de Mathématiques et Applications, France
b Institut Camille Jordan, Université Claude Bernard Lyon 1, France
c Université de Lille, Laboratoire Paul Painlevé, France
Abstract:
We investigate the interplay between the moduli spaces of ample
$\langle 2\rangle$-polarized IHS manifolds of type $\mathrm{K3}^{[2]}$
and of IHS manifolds of type $\mathrm{K3}^{[2]}$ with a non-symplectic
involution with invariant lattice of rank one. In particular, we
describe geometrically some new involutions of the Hilbert square of a K3 surface whose existence was proven in a previous paper of
Boissière, Cattaneo, Nieper-Wisskirchen, and Sarti.
Keywords:
irreducible holomorphic symplectic manifolds, non-symplectic automorphisms, ample cone.
Received: 08.06.2018 Revised: 22.10.2018
Citation:
S. Boissiière, A. Cattaneo, D. G. Markushevich, A. Sarti, “On the nonsymplectic involutions of the Hilbert square of a K3 surface”, Izv. RAN. Ser. Mat., 83:4 (2019), 86–99; Izv. Math., 83:4 (2019), 731–742
Linking options:
https://www.mathnet.ru/eng/im8823https://doi.org/10.1070/IM8823 https://www.mathnet.ru/eng/im/v83/i4/p86
|
Statistics & downloads: |
Abstract page: | 296 | Russian version PDF: | 35 | English version PDF: | 26 | References: | 39 | First page: | 10 |
|