Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 5, Pages 1066–1079
DOI: https://doi.org/10.1070/IM8783
(Mi im8783)
 

This article is cited in 2 scientific papers (total in 2 papers)

The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function

D. A. Popov

Lomonosov Moscow State University, Belozersky Research Institute of Physico-Chemical Biology
References:
Abstract: An explicit formula is obtained expressing the Chebyshev psi-function in terms of the discrete spectrum of the Laplace operator on the fundamental domain of the modular group.
Keywords: Selberg formula, spectrum of the Laplace operator, Chebyshev psi-function, modular group.
Received: 07.03.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 5, Pages 167–180
DOI: https://doi.org/10.4213/im8783
Bibliographic databases:
Document Type: Article
UDC: 511.331+515.178.1
MSC: Primary 11M36; Secondary 11F03
Language: English
Original paper language: Russian
Citation: D. A. Popov, “The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function”, Izv. RAN. Ser. Mat., 83:5 (2019), 167–180; Izv. Math., 83:5 (2019), 1066–1079
Citation in format AMSBIB
\Bibitem{Pop19}
\by D.~A.~Popov
\paper The discrete spectrum of the Laplace operator on the fundamental domain of the modular group and the Chebyshev psi-function
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 5
\pages 167--180
\mathnet{http://mi.mathnet.ru/im8783}
\crossref{https://doi.org/10.4213/im8783}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017548}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83.1066P}
\elib{https://elibrary.ru/item.asp?id=43302485}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 5
\pages 1066--1079
\crossref{https://doi.org/10.1070/IM8783}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000510719200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85087365225}
Linking options:
  • https://www.mathnet.ru/eng/im8783
  • https://doi.org/10.1070/IM8783
  • https://www.mathnet.ru/eng/im/v83/i5/p167
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:321
    Russian version PDF:36
    English version PDF:17
    References:37
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024