Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 4, Pages 743–769
DOI: https://doi.org/10.1070/IM8782
(Mi im8782)
 

This article is cited in 6 scientific papers (total in 6 papers)

Birationally rigid complete intersections of high codimension

D. Evans, A. V. Pukhlikov

Department of Mathematical Sciences, University of Liverpool
References:
Abstract: We prove that a Fano complete intersection of codimension $k$ and index $1$ in the complex projective space ${\mathbb P}^{M+k}$ for $k\geqslant 20$ and $M\geqslant 8k\log k$ with at most multi-quadratic singularities is birationally superrigid. The codimension of the complement of the set of birationally superrigid complete intersections in the natural moduli space is shown to be at least $(M-5k)(M-6k)/2$. The proof is based on the technique of hypertangent divisors combined with the recently discovered $4n^2$-inequality for complete intersection singularities.
Keywords: birational rigidity, maximal singularity, multiplicity, hypertangent divisor, complete intersection singularity.
Funding agency Grant number
Leverhulme Trust RPG-2016-279
This work was supported by the Leverhulme Trust, grant no. RPG-2016-279.
Received: 07.03.2018
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: Primary 14E05; Secondary 14E07
Language: English
Original paper language: Russian
Citation: D. Evans, A. V. Pukhlikov, “Birationally rigid complete intersections of high codimension”, Izv. Math., 83:4 (2019), 743–769
Citation in format AMSBIB
\Bibitem{EvaPuk19}
\by D.~Evans, A.~V.~Pukhlikov
\paper Birationally rigid complete intersections of high codimension
\jour Izv. Math.
\yr 2019
\vol 83
\issue 4
\pages 743--769
\mathnet{http://mi.mathnet.ru//eng/im8782}
\crossref{https://doi.org/10.1070/IM8782}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985692}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..743E}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000487318500005}
\elib{https://elibrary.ru/item.asp?id=38590298}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074766950}
Linking options:
  • https://www.mathnet.ru/eng/im8782
  • https://doi.org/10.1070/IM8782
  • https://www.mathnet.ru/eng/im/v83/i4/p100
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:293
    Russian version PDF:27
    English version PDF:16
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024