Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 2, Pages 391–412
DOI: https://doi.org/10.1070/IM8742
(Mi im8742)
 

This article is cited in 8 scientific papers (total in 8 papers)

Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs

I. I. Sharapudinovab

a Daghestan Scientific Centre of Russian Academy of Sciences, Makhachkala
b Vladikavkaz Scientific Centre of the Russian Academy of Sciences
References:
Abstract: We consider systems of functions ${\varphi}_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) that are Sobolev-orthonormal with respect to a scalar product of the form $\langle f,g\rangle= \sum_{\nu=0}^{r-1}f^{(\nu)}(a)g^{(\nu)}(a)+ \int_{a}^{b}f^{(r)}(x)g^{(r)}(x)\rho(x)\,dx$ and are generated by a given orthonormal system of functions $\varphi_{n}(x)$ ($n=0,1,\dots$). The Fourier series and sums with respect to the system $\varphi_{r,n}(x)$ ($r=1,2,\dots$, $n=0,1,\dots$) are shown to be a convenient and efficient tool for the approximate solution of the Cauchy problem for ordinary differential equations (ODEs).
Keywords: Sobolev-orthogonal systems, Cauchy problem for ODEs, systems generated by Haar functions, cosines or Chebyshev polynomials.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00486a
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 16-01-00486a).
Received: 29.11.2017
Revised: 09.10.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 2, Pages 204–226
DOI: https://doi.org/10.4213/im8742
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 42C05, 65L05
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs”, Izv. RAN. Ser. Mat., 83:2 (2019), 204–226; Izv. Math., 83:2 (2019), 391–412
Citation in format AMSBIB
\Bibitem{Sha19}
\by I.~I.~Sharapudinov
\paper Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 2
\pages 204--226
\mathnet{http://mi.mathnet.ru/im8742}
\crossref{https://doi.org/10.4213/im8742}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942804}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..391S}
\elib{https://elibrary.ru/item.asp?id=37180429}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 2
\pages 391--412
\crossref{https://doi.org/10.1070/IM8742}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466369800010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066316439}
Linking options:
  • https://www.mathnet.ru/eng/im8742
  • https://doi.org/10.1070/IM8742
  • https://www.mathnet.ru/eng/im/v83/i2/p204
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:412
    Russian version PDF:52
    English version PDF:13
    References:28
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024