Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 1, Pages 49–64
DOI: https://doi.org/10.1070/IM8731
(Mi im8731)
 

This article is cited in 3 scientific papers (total in 3 papers)

Existence theorems for a class of systems involving two quasilinear operators

D.-P. Covei

The Bucharest Uviversity of Economic Studies, Romania
References:
Abstract: In this paper, we study the existence of positive radial solutions for a class of quasilinear systems of the form
$$ \begin{cases} \Delta_{\phi_1}u=a_1(|x|)f_1(v), \\ \Delta_{\phi_2}v=a_2(|x|)f_2(u), \end{cases} \quad x\in \mathbb{R}^N, \quad N\geqslant 3, $$
where $\Delta_{\phi}w:=\operatorname{div}(\phi(|\nabla w|)\nabla w)$, under appropriate conditions on the functions $\phi_1$, $\phi_2$, the weights $a_1$, $a_2$ and the non-linearities $f_1$, $f_2$. The conditions imposed for the existence of such solutions are different from those in previous results.
Keywords: partial differential equations, cooperative systems, linear systems, non-linear systems, methods of approximation.
Received: 01.11.2017
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: English
Original paper language: Russian
Citation: D.-P. Covei, “Existence theorems for a class of systems involving two quasilinear operators”, Izv. Math., 83:1 (2019), 49–64
Citation in format AMSBIB
\Bibitem{Cov19}
\by D.-P.~Covei
\paper Existence theorems for a~class of systems involving two quasilinear operators
\jour Izv. Math.
\yr 2019
\vol 83
\issue 1
\pages 49--64
\mathnet{http://mi.mathnet.ru//eng/im8731}
\crossref{https://doi.org/10.1070/IM8731}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3920390}
\zmath{https://zbmath.org/?q=an:1412.35132}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83...49C}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000459866800003}
\elib{https://elibrary.ru/item.asp?id=37045038}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85062907627}
Linking options:
  • https://www.mathnet.ru/eng/im8731
  • https://doi.org/10.1070/IM8731
  • https://www.mathnet.ru/eng/im/v83/i1/p59
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024