Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 2, Pages 232–250
DOI: https://doi.org/10.1070/IM8728
(Mi im8728)
 

This article is cited in 3 scientific papers (total in 3 papers)

Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$

K. P. Isaevab, K. V. Trounovb, R. S. Yulmukhametovab

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa
b Bashkir State University, Ufa
References:
Abstract: We consider uniformly weighted spaces of analytic functions on a bounded convex domain in the complex plane with convex weights. For every uniformly weighted normed space $H(D,\varphi)$ we define a special inductive limit $\mathcal H_i(D,\varphi)$ of normed spaces and a special projective limit $\mathcal H_p(D,\varphi)$ of normed spaces. We prove that $\mathcal H_i(D,\varphi)$ is the smallest locally convex space which contains $H(D,\varphi)$ and is invariant under differentiation, and $\mathcal H_p(D,\varphi)$ is the largest such space which is contained in $H(D,\varphi)$. We construct a representing system of exponentials in the projective limit $\mathcal H_p(D, \varphi)$ and estimate the redundancy of this system.
Keywords: analytic functions, weighted spaces, locally convex spaces, sufficient sets, representing systems of exponentials.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00095-а
This paper was written with the support of the Russian Foundation for Basic Research (grant no. 18-01-00095-a).
Received: 27.10.2017
Revised: 17.07.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 2, Pages 40–60
DOI: https://doi.org/10.4213/im8728
Bibliographic databases:
Document Type: Article
UDC: 517.5
Language: English
Original paper language: Russian
Citation: K. P. Isaev, K. V. Trounov, R. S. Yulmukhametov, “Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$”, Izv. RAN. Ser. Mat., 83:2 (2019), 40–60; Izv. Math., 83:2 (2019), 232–250
Citation in format AMSBIB
\Bibitem{IsaTroYul19}
\by K.~P.~Isaev, K.~V.~Trounov, R.~S.~Yulmukhametov
\paper Representing systems of exponentials in projective limits of weighted subspaces of $H(D)$
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 2
\pages 40--60
\mathnet{http://mi.mathnet.ru/im8728}
\crossref{https://doi.org/10.4213/im8728}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942797}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..232I}
\elib{https://elibrary.ru/item.asp?id=37180422}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 2
\pages 232--250
\crossref{https://doi.org/10.1070/IM8728}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466369800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066319842}
Linking options:
  • https://www.mathnet.ru/eng/im8728
  • https://doi.org/10.1070/IM8728
  • https://www.mathnet.ru/eng/im/v83/i2/p40
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:446
    Russian version PDF:48
    English version PDF:16
    References:54
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024