Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 2, Pages 287–314
DOI: https://doi.org/10.1070/IM8720
(Mi im8720)
 

On the asymptotics of solutions of elliptic equations at the ends of non-compact Riemannian manifolds with metrics of a special form

A. N. Kondrashov

Volgograd State University, Institute of Mathematics and Information Technologies
References:
Abstract: We consider a linear elliptic differential equation $\Delta u+c(x)u=0$ defined on a Riemannian manifold $\mathcal{M}$ that has an end $\mathcal{X}$ on which the metric takes the form $dl^2=h^2(r)\,dr^2+q^2(r)\,d\theta^2$ in appropriate coordinates. Here $r\in [r_0,+\infty)$, $\theta\in S$, and $S$ is a smooth compact Riemannian manifold with metric $d\theta^2$. At the end $\mathcal{X}$, the coefficient $c(x)$ takes the form $c(x)=c(r)$. For ends of parabolic type with such metrics, we describe the property of asymptotic distinguishability of solutions of this equation. For ends of hyperbolic type, we prove a theorem on the admissible rate of convergence to zero for a difference of solutions of this equation. For both types of ends, we formulate versions of the generalized Cauchy problem with initial data $(\varphi(\theta),\psi(\theta))$ at the infinitely remote point and study its solubility. The results obtained are new and, in the case of ends of parabolic type, somewhat unexpected.
Keywords: non-compact Riemannian manifold, end of a manifold, spectral equation, asymptotic distinguishability, generalized Cauchy problem.
Received: 15.09.2017
Revised: 17.05.2018
Bibliographic databases:
Document Type: Article
UDC: 517.956.2+517.929.8
MSC: 58J05, 58J32
Language: English
Original paper language: Russian
Citation: A. N. Kondrashov, “On the asymptotics of solutions of elliptic equations at the ends of non-compact Riemannian manifolds with metrics of a special form”, Izv. Math., 83:2 (2019), 287–314
Citation in format AMSBIB
\Bibitem{Kon19}
\by A.~N.~Kondrashov
\paper On the asymptotics of solutions of elliptic equations at the ends
of non-compact Riemannian manifolds with metrics of a~special form
\jour Izv. Math.
\yr 2019
\vol 83
\issue 2
\pages 287--314
\mathnet{http://mi.mathnet.ru//eng/im8720}
\crossref{https://doi.org/10.1070/IM8720}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942800}
\zmath{https://zbmath.org/?q=an:1415.58013}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..287K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466369800006}
\elib{https://elibrary.ru/item.asp?id=37180425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066296795}
Linking options:
  • https://www.mathnet.ru/eng/im8720
  • https://doi.org/10.1070/IM8720
  • https://www.mathnet.ru/eng/im/v83/i2/p97
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025