Processing math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 5, Pages 933–962
DOI: https://doi.org/10.1070/IM1996v060n05ABEH000087
(Mi im87)
 

This article is cited in 14 scientific papers (total in 14 papers)

The cohomological Brauer group of a real algebraic variety

V. A. Krasnov
References:
Abstract: Methods are developed for calculating the cohomological Brauer group of a real algebraic variety, and they are used to determine completely the Brauer group of an Enriques surface.
Received: 11.04.1995
Bibliographic databases:
MSC: 13A20
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “The cohomological Brauer group of a real algebraic variety”, Izv. Math., 60:5 (1996), 933–962
Citation in format AMSBIB
\Bibitem{Kra96}
\by V.~A.~Krasnov
\paper The cohomological Brauer group of a~real algebraic variety
\jour Izv. Math.
\yr 1996
\vol 60
\issue 5
\pages 933--962
\mathnet{http://mi.mathnet.ru/eng/im87}
\crossref{https://doi.org/10.1070/IM1996v060n05ABEH000087}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1427396}
\zmath{https://zbmath.org/?q=an:0896.13003}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WN95300005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746813563}
Linking options:
  • https://www.mathnet.ru/eng/im87
  • https://doi.org/10.1070/IM1996v060n05ABEH000087
  • https://www.mathnet.ru/eng/im/v60/i5/p57
  • This publication is cited in the following 14 articles:
    1. Karoubi M., Weibel Ch., “the Real Graded Brauer Group”, Q. J. Math., 70:4 (2019), 1475–1503  crossref  isi
    2. V. A. Krasnov, “The Brauer and Witt Groups of Real Ruled Surfaces”, Math. Notes, 72:5 (2002), 652–659  mathnet  crossref  crossref  mathscinet  zmath  isi
    3. V. A. Krasnov, “Analogues of the Harnack–Thom inequality for a real algebraic surface”, Izv. Math., 64:5 (2000), 915–937  mathnet  crossref  crossref  mathscinet  zmath  isi
    4. V. A. Krasnov, “On the Picard group and the Brauer group of a real algebraic surface”, Math. Notes, 67:2 (2000), 168–175  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. V. A. Krasnov, “The Brauer group of an noncomplete real algebraic surface”, Math. Notes, 67:3 (2000), 296–300  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Degtyarev A., Itenberg I., Kharlamov V., “Real Enriques surfaces”, Real Enriques Surfaces, Lecture Notes in Mathematics, 1746, 2000, VII–+  crossref  mathscinet  isi
    7. Sujatha R., van H.amel J., “Level and Witt groups of real Enriques surfaces”, Pacific Journal of Mathematics, 196:1 (2000), 243–255  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    8. V. A. Krasnov, “The Bloch–Ogus spectral sequence of a real algebraic variety”, Math. Notes, 66:3 (1999), 306–309  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. V. A. Krasnov, “Real algebraic varieties without real points”, Izv. Math., 63:4 (1999), 757–790  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. V. A. Krasnov, “Real algebraic GMZ-surfaces”, Izv. Math., 62:4 (1998), 695–721  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. V. A. Krasnov, “The etale and equivariant cohomology of a real algebraic variety”, Izv. Math., 62:5 (1998), 1013–1034  mathnet  crossref  crossref  mathscinet  zmath  isi
    12. V. A. Krasnov, “Picard and Lefschetz numbers of real algebraic surfaces”, Math. Notes, 63:6 (1998), 747–751  mathnet  crossref  crossref  mathscinet  zmath  isi
    13. V. A. Krasnov, “On the Brauer group of a real algebraic surface”, Math. Notes, 60:6 (1996), 707–710  mathnet  crossref  crossref  mathscinet  zmath  isi
    14. V. A. Krasnov, “The equivariant cohomology groups of a real algebraic surface and their applications”, Izv. Math., 60:6 (1996), 1193–1217  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:184
    English version PDF:26
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025