Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 6, Pages 1148–1195
DOI: https://doi.org/10.1070/IM8693
(Mi im8693)
 

This article is cited in 6 scientific papers (total in 6 papers)

Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides

S. A. Nazarovab

a Saint Petersburg State University
b Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg
References:
Abstract: We study the spectrum of a planar square lattice of multidimensional acoustic waveguides (the Neumann problem for the Laplace operator), constructing and justifying asymptotic formulae for solutions of the spectral problem on a periodicity cell. A detailed study of corrections to expansions of eigenvalues and eigenfunctions enables us to construct a model of improved accuracy which is free from the drawbacks of the classical model on a one-dimensional graph (the skeleton of the lattice) with Kirchhoff's classical conjugation conditions at the vertices. In particular, we demonstrate the breakdown of cycles (localized eigenfunctions occurring in the classical model but almost always absent from the improved one) in the multidimensional problem. We discuss the opening of gaps and pseudogaps in the spectrum of the problem on an infinite multidimensional lattice.
Keywords: Neumann problem for the Laplace operator, lattice of thin waveguides, improved one-dimensional model, boundary layer, spectrum, thresholds, cycles, gaps.
Funding agency Grant number
Russian Science Foundation 17-11-01003
This work is supported by the Russian Science Foundation under grant no. 17-11-01003.
Received: 22.05.2017
Revised: 13.02.2018
Bibliographic databases:
Document Type: Article
UDC: 517.956.328+517.956.8+517.958+531.33
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Breakdown of cycles and the possibility of opening spectral gaps in a square lattice of thin acoustic waveguides”, Izv. Math., 82:6 (2018), 1148–1195
Citation in format AMSBIB
\Bibitem{Naz18}
\by S.~A.~Nazarov
\paper Breakdown of cycles and the possibility of opening spectral gaps
in a~square lattice of thin acoustic waveguides
\jour Izv. Math.
\yr 2018
\vol 82
\issue 6
\pages 1148--1195
\mathnet{http://mi.mathnet.ru//eng/im8693}
\crossref{https://doi.org/10.1070/IM8693}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3881767}
\zmath{https://zbmath.org/?q=an:1406.35210}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82.1148N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000454805800004}
\elib{https://elibrary.ru/item.asp?id=36448784}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85060179671}
Linking options:
  • https://www.mathnet.ru/eng/im8693
  • https://doi.org/10.1070/IM8693
  • https://www.mathnet.ru/eng/im/v82/i6/p78
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:462
    Russian version PDF:56
    English version PDF:19
    References:56
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024