Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 5, Pages 914–930
DOI: https://doi.org/10.1070/IM8684
(Mi im8684)
 

This article is cited in 3 scientific papers (total in 3 papers)

On an instantaneous blow-up of solutions of evolutionary problems on the half-line

M. O. Korpusov

Faculty of Physics, Lomonosov Moscow State University
References:
Abstract: We consider some initial-boundary value problems on the half-line for ‘1+1’-dimensional equations of Sobolev type with homogeneous boundary conditions at the beginning of the half-line. We show that weak solutions of these problems are absent even locally in time. Moreover, we consider problems on an interval with the same boundary conditions on one of the ends of the interval $[0,L]$. We prove the local in time (unique) solubility of the problems under consideration in the classical sense, and obtain sufficient conditions for the blow-up of these solutions in finite time. Using the upper bounds thus obtained for the blow-up times for classical solutions of the corresponding problems, we show that the blow-up time tends to zero as $L\to+\infty$. Thus, a classical solution on the line is also absent, even locally, and we describe an algorithm for the subsequent numerical diagnosis of the instantaneous blow-up on the half-line.
Keywords: non-linear equations of Sobolev type, blow-up, local solubility, non-linear capacity, bounds for the blow-up time.
Received: 10.04.2017
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: Primary 35L53; Secondary 35A01, 35B44
Language: English
Original paper language: Russian
Citation: M. O. Korpusov, “On an instantaneous blow-up of solutions of evolutionary problems on the half-line”, Izv. Math., 82:5 (2018), 914–930
Citation in format AMSBIB
\Bibitem{Kor18}
\by M.~O.~Korpusov
\paper On an instantaneous blow-up of solutions of evolutionary problems on the half-line
\jour Izv. Math.
\yr 2018
\vol 82
\issue 5
\pages 914--930
\mathnet{http://mi.mathnet.ru//eng/im8684}
\crossref{https://doi.org/10.1070/IM8684}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859379}
\zmath{https://zbmath.org/?q=an:1406.35066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..914K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000448948200003}
\elib{https://elibrary.ru/item.asp?id=36448772}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056425976}
Linking options:
  • https://www.mathnet.ru/eng/im8684
  • https://doi.org/10.1070/IM8684
  • https://www.mathnet.ru/eng/im/v82/i5/p61
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:437
    Russian version PDF:70
    English version PDF:24
    References:63
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024