Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2019, Volume 83, Issue 2, Pages 361–390
DOI: https://doi.org/10.1070/IM8673
(Mi im8673)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of solutions of a modified Whitham equation with surface tension

P. I. Naumkin

National Autonomous University of Mexico, Institute of Mathematics
References:
Abstract: We study the large-time behaviour of solutions of the Cauchy problem for a modified Whitham equation,
$$ \begin{cases} u_{t}+i\mathbf{\Lambda}u-\partial_{x}u^3=0, &(t,x) \in\mathbb{R}^2, \\ u(0,x)=u_0(x), &x\in \mathbb{R}, \end{cases} $$
where the pseudodifferential operator $\mathbf{\Lambda}\equiv \Lambda (-i\partial_{x})=\mathcal{F}^{-1}[\Lambda (\xi) \mathcal{F}]$ is given by the symbol
$$ \Lambda (\xi)=a^{-{1}/{2}}\xi \biggl(\sqrt{(1+a^2\xi^2) \frac{\operatorname{tanh}a\xi}{a\xi}\,}-1\biggr) $$
with a parameter $a>0$. This symbol corresponds to the total dispersion relation for water waves taking surface tension into account. Assuming that the total mass of the initial data is equal to zero ($\int_{\mathbb{R}}u_0(x)\,dx=0$) and the initial data $u_0$ are small in the norm of $\mathbf{H}^{\nu}(\mathbb{R}) \cap \mathbf{H}^{0,1}(\mathbb{R})$, $\nu \geqslant 22$, we prove the existence of a global-in-time solution and describe its large-time asymptotic behaviour.
Keywords: Whitham equation, critical non-linearity, large-time asymptotics.
Received: 20.03.2017
Revised: 27.08.2018
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2019, Volume 83, Issue 2, Pages 174–203
DOI: https://doi.org/10.4213/im8673
Bibliographic databases:
Document Type: Article
UDC: 517.956.8 + 517.953
MSC: 35B40, 35Q35, 76B15
Language: English
Original paper language: Russian
Citation: P. I. Naumkin, “Asymptotics of solutions of a modified Whitham equation with surface tension”, Izv. RAN. Ser. Mat., 83:2 (2019), 174–203; Izv. Math., 83:2 (2019), 361–390
Citation in format AMSBIB
\Bibitem{Nau19}
\by P.~I.~Naumkin
\paper Asymptotics of solutions of a~modified Whitham equation with surface tension
\jour Izv. RAN. Ser. Mat.
\yr 2019
\vol 83
\issue 2
\pages 174--203
\mathnet{http://mi.mathnet.ru/im8673}
\crossref{https://doi.org/10.4213/im8673}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3942803}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019IzMat..83..361N}
\elib{https://elibrary.ru/item.asp?id=37180428}
\transl
\jour Izv. Math.
\yr 2019
\vol 83
\issue 2
\pages 361--390
\crossref{https://doi.org/10.1070/IM8673}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000466369800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85066307097}
Linking options:
  • https://www.mathnet.ru/eng/im8673
  • https://doi.org/10.1070/IM8673
  • https://www.mathnet.ru/eng/im/v83/i2/p174
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:286
    Russian version PDF:32
    English version PDF:11
    References:32
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024