Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 3, Pages 512–531
DOI: https://doi.org/10.1070/IM8636
(Mi im8636)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ultrasoluble coverings of some nilpotent groups by a cyclic group over number fields and related questions

D. D. Kiselev

All-Russian Academy of International Trade
References:
Abstract: -Let $F$ be a finite nilpotent group of odd order. For every finite cyclic subgroup $A$ of odd order we find necessary and sufficient conditions for a class $h\in H^2(F,A)$ to determine an ultrasoluble extension (under the additional assumption of minimality of all $p$-Sylow subextensions to the extension with class $h$ for all non-Abelian $p$-Sylow subgroups $F_p$ of $F$), that is, for the existence of a Galois extension of number fields $K/k$ with group $F$ such that the corresponding embedding problem is ultrasoluble (it has solutions and all such solutions are fields). We also establish a number of related results.
Keywords: -embedding problem, concordance condition, ultrasolubility, co-embedding problem.
Received: 05.12.2016
Revised: 09.04.2017
Bibliographic databases:
Document Type: Article
UDC: 512.623.32
MSC: 12F12, 11R32, 16K50
Language: English
Original paper language: Russian
Citation: D. D. Kiselev, “Ultrasoluble coverings of some nilpotent groups by a cyclic group over number fields and related questions”, Izv. Math., 82:3 (2018), 512–531
Citation in format AMSBIB
\Bibitem{Kis18}
\by D.~D.~Kiselev
\paper Ultrasoluble coverings of some nilpotent groups by a~cyclic group
over number fields and related questions
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 512--531
\mathnet{http://mi.mathnet.ru//eng/im8636}
\crossref{https://doi.org/10.1070/IM8636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807875}
\zmath{https://zbmath.org/?q=an:1425.12003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..512K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437922000004}
\elib{https://elibrary.ru/item.asp?id=34940560}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049847847}
Linking options:
  • https://www.mathnet.ru/eng/im8636
  • https://doi.org/10.1070/IM8636
  • https://www.mathnet.ru/eng/im/v82/i3/p69
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:371
    Russian version PDF:48
    English version PDF:22
    References:42
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024