Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 5, Pages 985–1029
DOI: https://doi.org/10.1070/IM8629
(Mi im8629)
 

This article is cited in 4 scientific papers (total in 4 papers)

Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III

V. V. Nikulinab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Department of Mathematical Sciences, University of Liverpool, Liverpool, UK
References:
Abstract: Following our papers [1] and [2] (Parts I and II), we classify degenerations of codimension 2 or more of Kählerian K3 surfaces with finite symplectic automorphism groups. In [1] and [2] this was done for codimension 1.
Keywords: K3 surface, Kählerian surface, automorphism group, degeneration, singularities, Picard lattice, integral symmetric bilinear form.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant 14-50-00005.
Received: 18.11.2016
Bibliographic databases:
Document Type: Article
UDC: 512.774.4+512.774.2+512.542+512.647.4
PACS: 14J10, 14J28, 14J50
MSC: 14J10, 14J28, 14J50
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III”, Izv. Math., 81:5 (2017), 985–1029
Citation in format AMSBIB
\Bibitem{Nik17}
\by V.~V.~Nikulin
\paper Degenerations of K\"ahlerian K3 surfaces with finite symplectic automorphism groups.~III
\jour Izv. Math.
\yr 2017
\vol 81
\issue 5
\pages 985--1029
\mathnet{http://mi.mathnet.ru//eng/im8629}
\crossref{https://doi.org/10.1070/IM8629}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3706862}
\zmath{https://zbmath.org/?q=an:1386.14140}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..985N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000416408800004}
\elib{https://elibrary.ru/item.asp?id=30512280}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85041005363}
Linking options:
  • https://www.mathnet.ru/eng/im8629
  • https://doi.org/10.1070/IM8629
  • https://www.mathnet.ru/eng/im/v81/i5/p105
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024