Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 4, Pages 662–693
DOI: https://doi.org/10.1070/IM8627
(Mi im8627)
 

On a classical correspondence of real K3 surfaces

V. A. Krasnov

P.G. Demidov Yaroslavl State University
References:
Abstract: This paper is devoted to the classical correspondence between real K3 surfaces of degree 8 which are complete intersections of three real quadrics, and real K3 surfaces which are two-sheeted coverings of the corresponding pencils of quadrics with branching along the curves of degenerate quadrics.
Keywords: real K3 surface, real triquadric, pencil of quadrics, two-sheeted covering, deformation class, theta characteristic.
Received: 07.11.2016
Revised: 17.01.2017
Bibliographic databases:
Document Type: Article
UDC: 512.7
Language: English
Original paper language: Russian
Citation: V. A. Krasnov, “On a classical correspondence of real K3 surfaces”, Izv. Math., 82:4 (2018), 662–693
Citation in format AMSBIB
\Bibitem{Kra18}
\by V.~A.~Krasnov
\paper On a~classical correspondence of real K3 surfaces
\jour Izv. Math.
\yr 2018
\vol 82
\issue 4
\pages 662--693
\mathnet{http://mi.mathnet.ru//eng/im8627}
\crossref{https://doi.org/10.1070/IM8627}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3833473}
\zmath{https://zbmath.org/?q=an:1405.14094}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..662K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000443002900002}
\elib{https://elibrary.ru/item.asp?id=35276428}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85053119962}
Linking options:
  • https://www.mathnet.ru/eng/im8627
  • https://doi.org/10.1070/IM8627
  • https://www.mathnet.ru/eng/im/v82/i4/p18
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:461
    Russian version PDF:48
    English version PDF:10
    References:45
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024