Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 43, Issue 1, Pages 105–118
DOI: https://doi.org/10.1070/IM1994v043n01ABEH001551
(Mi im860)
 

This article is cited in 2 scientific papers (total in 2 papers)

Maximal tubular surfaces of arbitrary codimension in the Minkowski space

V. A. Klyachin
References:
Abstract: A surface, given by a $C^2$-immersion $u\colon M\to R_1^{n+1}$, is said to be tubular if the cross-sections $u(M)\cap\Pi$ are compact for all hyperplanes $\Pi$ that are orthogonal to the time axis. Space-like surfaces with zero mean curvature vector are maximal. The extrinsic properties of maximal tubular surfaces are studied in this paper. In particular, it is proved that if such a surface, of dimension $p\geqslant 3$, has a singularity, then it has finite spread along the time axis.
Received: 06.12.1991
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1993, Volume 57, Issue 4, Pages 118–131
Bibliographic databases:
UDC: 517.95
MSC: 53C42, 53C50
Language: English
Original paper language: Russian
Citation: V. A. Klyachin, “Maximal tubular surfaces of arbitrary codimension in the Minkowski space”, Izv. RAN. Ser. Mat., 57:4 (1993), 118–131; Russian Acad. Sci. Izv. Math., 43:1 (1994), 105–118
Citation in format AMSBIB
\Bibitem{Kly93}
\by V.~A.~Klyachin
\paper Maximal tubular surfaces of arbitrary codimension in the Minkowski space
\jour Izv. RAN. Ser. Mat.
\yr 1993
\vol 57
\issue 4
\pages 118--131
\mathnet{http://mi.mathnet.ru/im860}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1243354}
\zmath{https://zbmath.org/?q=an:0824.53060}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43..105K}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 1
\pages 105--118
\crossref{https://doi.org/10.1070/IM1994v043n01ABEH001551}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994PQ58000006}
Linking options:
  • https://www.mathnet.ru/eng/im860
  • https://doi.org/10.1070/IM1994v043n01ABEH001551
  • https://www.mathnet.ru/eng/im/v57/i4/p118
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:396
    Russian version PDF:111
    English version PDF:24
    References:66
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024