Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 3, Pages 477–493
DOI: https://doi.org/10.1070/IM8597
(Mi im8597)
 

This article is cited in 1 scientific paper (total in 1 paper)

Minimal hypersurfaces in $\mathbb{S}^5$ with vanishing Gauss–Kronecker curvature

M. M. Diniza, J. A. Vilhenaa, J. F. Zapatab

a Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará
b Universidade de São Paulo, Escola de Engenharia de Lorena
References:
Abstract: We give a local description of complete minimal hypersurfaces in $\mathbb{S}^5$ with zero Gauss–Kronecker curvature, zero $3$-mean curvature and nowhere-zero second fundamental form.
Keywords: minimal hypersurfaces, Gauss–Kronecker curvature, complete hypersurfaces.
Funding agency Grant number
Coordenaҫão de Aperfeiҫoamento de Pessoal de Nível Superior PROCAD-NF/2010
National Council for Scientific and Technological Development (CNPq)
The first and second authors were supported by CAPES (PROCAD-NF/2010), and the third by CNPq.
Received: 19.08.2016
Revised: 21.04.2017
Bibliographic databases:
Document Type: Article
UDC: 714.76
MSC: 53C42
Language: English
Original paper language: Russian
Citation: M. M. Diniz, J. A. Vilhena, J. F. Zapata, “Minimal hypersurfaces in $\mathbb{S}^5$ with vanishing Gauss–Kronecker curvature”, Izv. Math., 82:3 (2018), 477–493
Citation in format AMSBIB
\Bibitem{DinVilZap18}
\by M.~M.~Diniz, J.~A.~Vilhena, J.~F.~Zapata
\paper Minimal hypersurfaces in $\mathbb{S}^5$ with vanishing Gauss--Kronecker curvature
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 477--493
\mathnet{http://mi.mathnet.ru//eng/im8597}
\crossref{https://doi.org/10.1070/IM8597}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807873}
\zmath{https://zbmath.org/?q=an:1394.53063}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..477D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437922000002}
\elib{https://elibrary.ru/item.asp?id=34940557}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050027006}
Linking options:
  • https://www.mathnet.ru/eng/im8597
  • https://doi.org/10.1070/IM8597
  • https://www.mathnet.ru/eng/im/v82/i3/p31
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:370
    Russian version PDF:41
    English version PDF:13
    References:47
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024