Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 2, Pages 273–282
DOI: https://doi.org/10.1070/IM8584
(Mi im8584)
 

On the factorization of matrix and operator Wiener–Hopf integral equations

N. B. Engibaryan

Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
References:
Abstract: Let $\widehat{K}$ be a Wiener–Hopf operator, $\widehat{K}f(x)=\int_0^{\infty}K(x-t)f(t)\,dt$, $x\geqslant 0$, and let $\widehat{K}^*$ be the adjoint operator, $(f\widehat{K}^*)(t)=\int_0^{\infty}f(x)K(x-t)\,dx$, $t\geqslant 0$, where $K(x)$ belongs to the Banach space $L_1 (G,(-\infty,\infty))$ of Bochner strongly integrable functions with values in a Banach algebra $G$. We consider the canonical factorization problem $I-\widehat{K}=(I-\widehat{V}_-)(I-\widehat{V}_+)$, where $I$ is the identity operator and $\widehat{V}_-$ (resp. $\widehat{V}_+ $) is a left (resp. right) triangular convolution operator such that the operators $I-\widehat{V}_{\pm}$ are invertible in the spaces $L_{p} (G,(0,\infty))$, $1\leqslant p\leqslant \infty$. We put forward a semi-inverse factorization method and prove that the canonical factorization exists if and only if the operators $I-\widehat{K}$ and $I-\widehat{K}^*$ are invertible in $L_1 (G,(0,\infty))$.
Keywords: operator Wiener–Hopf integral equation, strongly integrable functions, semi-inverse Volterra factorization method.
Funding agency Grant number
State Committee on Science of the Ministry of Education and Science of the Republic of Armenia 15T-1A246
This investigation has been carried out with the financial support of the State Committee on Science MSE RA under scientific project no. 15T-1A246.
Received: 16.06.2016
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2018, Volume 82, Issue 2, Pages 33–42
DOI: https://doi.org/10.4213/im8584
Bibliographic databases:
Document Type: Article
UDC: 517.968.25+517.968.28
MSC: 45E10, 45F15, 47B35
Language: English
Original paper language: Russian
Citation: N. B. Engibaryan, “On the factorization of matrix and operator Wiener–Hopf integral equations”, Izv. RAN. Ser. Mat., 82:2 (2018), 33–42; Izv. Math., 82:2 (2018), 273–282
Citation in format AMSBIB
\Bibitem{Eng18}
\by N.~B.~Engibaryan
\paper On the factorization of matrix and operator Wiener--Hopf integral equations
\jour Izv. RAN. Ser. Mat.
\yr 2018
\vol 82
\issue 2
\pages 33--42
\mathnet{http://mi.mathnet.ru/im8584}
\crossref{https://doi.org/10.4213/im8584}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3780045}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..273E}
\elib{https://elibrary.ru/item.asp?id=32641297}
\transl
\jour Izv. Math.
\yr 2018
\vol 82
\issue 2
\pages 273--282
\crossref{https://doi.org/10.1070/IM8584}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000431980900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85046629716}
Linking options:
  • https://www.mathnet.ru/eng/im8584
  • https://doi.org/10.1070/IM8584
  • https://www.mathnet.ru/eng/im/v82/i2/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1838
    Russian version PDF:63
    English version PDF:32
    References:1054
    First page:327
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024