|
On the factorization of matrix and operator Wiener–Hopf integral equations
N. B. Engibaryan Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
Abstract:
Let $\widehat{K}$ be a Wiener–Hopf operator, $\widehat{K}f(x)=\int_0^{\infty}K(x-t)f(t)\,dt$, $x\geqslant 0$, and let $\widehat{K}^*$ be the adjoint operator, $(f\widehat{K}^*)(t)=\int_0^{\infty}f(x)K(x-t)\,dx$, $t\geqslant 0$, where $K(x)$ belongs to the Banach space $L_1 (G,(-\infty,\infty))$ of Bochner strongly integrable functions with values in a Banach algebra $G$. We consider the canonical factorization problem $I-\widehat{K}=(I-\widehat{V}_-)(I-\widehat{V}_+)$, where $I$ is the identity operator and $\widehat{V}_-$ (resp. $\widehat{V}_+ $) is a left (resp. right) triangular convolution operator such that the operators $I-\widehat{V}_{\pm}$ are invertible in the spaces $L_{p} (G,(0,\infty))$, $1\leqslant p\leqslant \infty$. We put forward a semi-inverse factorization method and prove that the canonical factorization exists if and only if the operators $I-\widehat{K}$ and $I-\widehat{K}^*$ are invertible in $L_1 (G,(0,\infty))$.
Keywords:
operator Wiener–Hopf integral equation, strongly integrable functions,
semi-inverse Volterra factorization method.
Received: 16.06.2016
Citation:
N. B. Engibaryan, “On the factorization of matrix and operator Wiener–Hopf integral equations”, Izv. RAN. Ser. Mat., 82:2 (2018), 33–42; Izv. Math., 82:2 (2018), 273–282
Linking options:
https://www.mathnet.ru/eng/im8584https://doi.org/10.1070/IM8584 https://www.mathnet.ru/eng/im/v82/i2/p33
|
Statistics & downloads: |
Abstract page: | 1838 | Russian version PDF: | 63 | English version PDF: | 32 | References: | 1054 | First page: | 327 |
|