Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 5, Pages 884–909
DOI: https://doi.org/10.1070/IM8516
(Mi im8516)
 

This article is cited in 3 scientific papers (total in 3 papers)

Threefold extremal contractions of type (IIA). I

S. Moriab, Yu. G. Prokhorovcde

a Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan
b Kyoto University Institute for Advanced Study, Kyoto University, Kyoto, Japan
c Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
d Faculty of Mechanics and Mathematics, Lomonosov Moscow State University
e National Research University "Higher School of Economics" (HSE), Moscow
References:
Abstract: Let $(X,C)$ be a germ of a threefold $X$ with terminal singularities along an irreducible reduced complete curve $C$ with a contraction $f\colon(X,C)\to(Z,o)$ such that $C=f^{-1}(o)_{\mathrm{red}}$ and $-K_X$ is ample. Assume that $(X,C)$ contains a point of type $(\mathrm{IIA})$ and that a general member $H\in|\mathscr O_X|$ containing $C$ is normal. We classify such germs in terms of $H$.
Keywords: extremal contraction, threefold, extremal curve germ, terminal singularity, sheaf.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-02164а
15-01-02158а
15-51-50045Яф_а
Japan Society for the Promotion of Science (A) 25287005
(S) 24224001
The first author's work was partially supported by JSPS KAKENHI Grant Numbers (A) 25287005 and (S) 24224001. The second author's work was partially supported by the RFFI grants 15-01-02164a, 15-01-02158a, 15-51-50045ЯФ$\_$а, and by a subsidy granted to the HSE by the Government of the Russian Federation for the implementation of the Global Competitiveness Program.
Received: 28.01.2016
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 5, Pages 77–102
DOI: https://doi.org/10.4213/im8516
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: 14J30, 14E30, 14E05
Language: English
Original paper language: English
Citation: S. Mori, Yu. G. Prokhorov, “Threefold extremal contractions of type (IIA). I”, Izv. Math., 80:5 (2016), 884–909
Citation in format AMSBIB
\Bibitem{MorPro16}
\by S.~Mori, Yu.~G.~Prokhorov
\paper Threefold extremal contractions of type (IIA).~I
\jour Izv. Math.
\yr 2016
\vol 80
\issue 5
\pages 884--909
\mathnet{http://mi.mathnet.ru//eng/im8516}
\crossref{https://doi.org/10.1070/IM8516}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588806}
\zmath{https://zbmath.org/?q=an:06662664}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..884M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391093500004}
\elib{https://elibrary.ru/item.asp?id=27349856}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994718698}
Linking options:
  • https://www.mathnet.ru/eng/im8516
  • https://doi.org/10.1070/IM8516
  • https://www.mathnet.ru/eng/im/v80/i5/p77
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:552
    Russian version PDF:65
    English version PDF:18
    References:68
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024