Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 3, Pages 592–617
DOI: https://doi.org/10.1070/IM8476
(Mi im8476)
 

This article is cited in 2 scientific papers (total in 2 papers)

Partitioning Kripke frames of finite height

A. V. Kudinovabc, I. B. Shapirovskya

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b National Research University "Higher School of Economics" (HSE), Moscow
c Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: In this paper we prove the finite model property and decidability of a family of modal logics. A binary relation $R$ is said to be pretransitive if $R^*=\bigcup_{i\leqslant m} R^i$ for some $m\geqslant 0$, where $R^*$ is the transitive reflexive closure of $R$. By the height of a frame $(W,R)$ we mean the height of the preorder $(W,R^*)$. We construct special partitions (filtrations) of pretransitive frames of finite height, which implies the finite model property and decidability of their modal logics.
Keywords: modal logic, finite model property, decidability, pretransitive relation, finite height.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This research was carried out in the IITP RAS at the expense of a grant of the Russian Science Foundation (project no. 14-50-00150).
Received: 19.11.2015
Bibliographic databases:
UDC: 510.643
MSC: 03B45
Language: English
Original paper language: Russian
Citation: A. V. Kudinov, I. B. Shapirovsky, “Partitioning Kripke frames of finite height”, Izv. Math., 81:3 (2017), 592–617
Citation in format AMSBIB
\Bibitem{KudSha17}
\by A.~V.~Kudinov, I.~B.~Shapirovsky
\paper Partitioning Kripke frames of finite height
\jour Izv. Math.
\yr 2017
\vol 81
\issue 3
\pages 592--617
\mathnet{http://mi.mathnet.ru//eng/im8476}
\crossref{https://doi.org/10.1070/IM8476}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3659549}
\zmath{https://zbmath.org/?q=an:1371.03025}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..592K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000408479100006}
\elib{https://elibrary.ru/item.asp?id=29254886}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85025475493}
Linking options:
  • https://www.mathnet.ru/eng/im8476
  • https://doi.org/10.1070/IM8476
  • https://www.mathnet.ru/eng/im/v81/i3/p134
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:489
    Russian version PDF:98
    English version PDF:22
    References:58
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024