Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 5, Pages 958–993
DOI: https://doi.org/10.1070/IM8464
(Mi im8464)
 

This article is cited in 2 scientific papers (total in 2 papers)

Formal equivariant ˆA class, splines and multiplicities of the index of transversally elliptic operators

M. Vergne

Université Denis-Diderot-Paris 7, Institut de Mathématiques de Jussieu, Paris, France
References:
Abstract: Let G be a connected compact Lie group acting on a manifold M and let D be a transversally elliptic operator on M. The multiplicity of the index of D is a function on the set ˆG of irreducible representations of G. Let T be a maximal torus of G with Lie algebra t. We construct a finite number of piecewise polynomial functions on t, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant ˆA class.
Keywords: equivariant index, equivariant K-theory, splines.
Received: 24.10.2015
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
MSC: 19K56, 58J20
Language: English
Original paper language: English
Citation: M. Vergne, “Formal equivariant ˆA class, splines and multiplicities of the index of transversally elliptic operators”, Izv. Math., 80:5 (2016), 958–993
Citation in format AMSBIB
\Bibitem{Ver16}
\by M.~Vergne
\paper Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
\jour Izv. Math.
\yr 2016
\vol 80
\issue 5
\pages 958--993
\mathnet{http://mi.mathnet.ru/eng/im8464}
\crossref{https://doi.org/10.1070/IM8464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588809}
\zmath{https://zbmath.org/?q=an:06662667}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..958V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391093500007}
\elib{https://elibrary.ru/item.asp?id=27349861}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994745795}
Linking options:
  • https://www.mathnet.ru/eng/im8464
  • https://doi.org/10.1070/IM8464
  • https://www.mathnet.ru/eng/im/v80/i5/p157
  • This publication is cited in the following 2 articles:
    1. Y. Loizides, P.-E. Paradan, M. Vergne, “Semi-classical analysis of piecewise quasi-polynomial functions and applications to geometric quantization”, Indag. Math.-New Ser., 32:1 (2021), 151–192  crossref  mathscinet  zmath  isi  scopus
    2. M. Vergne, “The equivariant Riemann-Roch theorem and the graded Todd class”, C. R. Math. Acad. Sci. Paris, 355:5 (2017), 563–570  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:314
    Russian version PDF:68
    English version PDF:28
    References:63
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025