Abstract:
Let G be a connected compact Lie group acting on a manifold M and let D be a transversally elliptic operator on M. The multiplicity of the index of D is a function on the set ˆG of irreducible representations of G. Let T be a maximal torus of G with Lie algebra t. We construct a finite number of piecewise polynomial functions on t∗, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant ˆA class.
Citation:
M. Vergne, “Formal equivariant ˆA class, splines and multiplicities of the index of transversally elliptic operators”, Izv. Math., 80:5 (2016), 958–993
\Bibitem{Ver16}
\by M.~Vergne
\paper Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
\jour Izv. Math.
\yr 2016
\vol 80
\issue 5
\pages 958--993
\mathnet{http://mi.mathnet.ru/eng/im8464}
\crossref{https://doi.org/10.1070/IM8464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588809}
\zmath{https://zbmath.org/?q=an:06662667}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..958V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391093500007}
\elib{https://elibrary.ru/item.asp?id=27349861}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994745795}
Linking options:
https://www.mathnet.ru/eng/im8464
https://doi.org/10.1070/IM8464
https://www.mathnet.ru/eng/im/v80/i5/p157
This publication is cited in the following 2 articles:
Y. Loizides, P.-E. Paradan, M. Vergne, “Semi-classical analysis of piecewise quasi-polynomial functions and applications to geometric quantization”, Indag. Math.-New Ser., 32:1 (2021), 151–192
M. Vergne, “The equivariant Riemann-Roch theorem and the graded Todd class”, C. R. Math. Acad. Sci. Paris, 355:5 (2017), 563–570