Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 5, Pages 958–993
DOI: https://doi.org/10.1070/IM8464
(Mi im8464)
 

This article is cited in 2 scientific papers (total in 2 papers)

Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators

M. Vergne

Université Denis-Diderot-Paris 7, Institut de Mathématiques de Jussieu, Paris, France
References:
Abstract: Let $G$ be a connected compact Lie group acting on a manifold $M$ and let $D$ be a transversally elliptic operator on $M$. The multiplicity of the index of $D$ is a function on the set $\widehat G$ of irreducible representations of $G$. Let $T$ be a maximal torus of $G$ with Lie algebra $\mathfrak t$. We construct a finite number of piecewise polynomial functions on $\mathfrak t^*$, and give a formula for the multiplicity in terms of these functions. The main new concept is the formal equivariant $\widehat A$ class.
Keywords: equivariant index, equivariant $K$-theory, splines.
Received: 24.10.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 5, Pages 157–192
DOI: https://doi.org/10.4213/im8464
Bibliographic databases:
Document Type: Article
UDC: 512.815.1
MSC: 19K56, 58J20
Language: English
Original paper language: English
Citation: M. Vergne, “Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators”, Izv. Math., 80:5 (2016), 958–993
Citation in format AMSBIB
\Bibitem{Ver16}
\by M.~Vergne
\paper Formal equivariant $\widehat A$ class, splines and multiplicities of the index of transversally elliptic operators
\jour Izv. Math.
\yr 2016
\vol 80
\issue 5
\pages 958--993
\mathnet{http://mi.mathnet.ru//eng/im8464}
\crossref{https://doi.org/10.1070/IM8464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588809}
\zmath{https://zbmath.org/?q=an:06662667}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..958V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000391093500007}
\elib{https://elibrary.ru/item.asp?id=27349861}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84994745795}
Linking options:
  • https://www.mathnet.ru/eng/im8464
  • https://doi.org/10.1070/IM8464
  • https://www.mathnet.ru/eng/im/v80/i5/p157
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:273
    Russian version PDF:62
    English version PDF:23
    References:52
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024