Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1159–1199
DOI: https://doi.org/10.1070/IM8440
(Mi im8440)
 

This article is cited in 1 scientific paper (total in 1 paper)

Linear $\mathrm{GLP}$-algebras and their elementary theories

F. N. Pakhomov

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: The polymodal provability logic $\mathrm{GLP}$ was introduced by Japaridze in 1986. It is the provability logic of certain chains of provability predicates of increasing strength. Every polymodal logic corresponds to a variety of polymodal algebras. Beklemishev and Visser asked whether the elementary theory of the free $\mathrm{GLP}$-algebra generated by the constants $\mathbf{0}$, $\mathbf{1}$ is decidable [1]. For every positive integer $n$ we solve the corresponding question for the logics $\mathrm{GLP}_n$ that are the fragments of $\mathrm{GLP}$ with $n$ modalities. We prove that the elementary theory of the free $\mathrm{GLP}_n$-algebra generated by the constants $\mathbf{0}$, $\mathbf{1}$ is decidable for all $n$. We introduce the notion of a linear $\mathrm{GLP}_n$-algebra and prove that all free $\mathrm{GLP}_n$-algebras generated by the constants $\mathbf{0}$, $\mathbf{1}$ are linear. We also consider the more general case of the logics $\mathrm{GLP}_\alpha$ whose modalities are indexed by the elements of a linearly ordered set $\alpha$: we define the notion of a linear algebra and prove the latter result in this case.
Keywords: provability logics, modal algebras, free algebras, elementary theories, Japaridze logic.
Funding agency Grant number
Russian Science Foundation 16-11-10252
This work is supported by the Russian Science Foundation under grant 16-11-10252.
Received: 20.05.2016
Bibliographic databases:
Document Type: Article
UDC: 512.572
MSC: 03F45, 03B25
Language: English
Original paper language: Russian
Citation: F. N. Pakhomov, “Linear $\mathrm{GLP}$-algebras and their elementary theories”, Izv. Math., 80:6 (2016), 1159–1199
Citation in format AMSBIB
\Bibitem{Pak16}
\by F.~N.~Pakhomov
\paper Linear $\mathrm{GLP}$-algebras and their elementary theories
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1159--1199
\mathnet{http://mi.mathnet.ru//eng/im8440}
\crossref{https://doi.org/10.1070/IM8440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588818}
\zmath{https://zbmath.org/?q=an:1402.03087}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1159P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500008}
\elib{https://elibrary.ru/item.asp?id=27484929}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011654118}
Linking options:
  • https://www.mathnet.ru/eng/im8440
  • https://doi.org/10.1070/IM8440
  • https://www.mathnet.ru/eng/im/v80/i6/p173
  • Related presentations:
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:502
    Russian version PDF:83
    English version PDF:22
    References:58
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024