Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 4, Pages 827–887
DOI: https://doi.org/10.1070/IM8438
(Mi im8438)
 

This article is cited in 2 scientific papers (total in 2 papers)

A criterion for semiampleness

V. V. Shokurov

Steklov Mathematical Institute of Russian Academy of Sciences
References:
Abstract: We suggest a sufficient condition for the existence of a morphism from a diagram of quasipolarized primary algebraic spaces into a polarized pair. Moreover, we describe diagrams in the category of quasipolarized algebraic spaces such that every finite subdiagram of such a diagram has a morphism into a polarized pair and all fine subdiagrams which are closed under inclusions and under skrepas have a polarized colimit. Such diagrams are called sobors, and their arrows are inclusions and skrepas. The main application is a criterion for the semiampleness of a nef invertible sheaf on a complete algebraic space in terms of a sobor.
Keywords: sobor, skrepa, big, colimit, nef, semiampleness.
Funding agency Grant number
Russian Science Foundation 14-50-00005
This work is supported by the Russian Science Foundation under grant no. 14-50-00005.
Received: 12.08.2015
Bibliographic databases:
Document Type: Article
UDC: 512.76
MSC: 14C20, 14E30
Language: English
Original paper language: Russian
Citation: V. V. Shokurov, “A criterion for semiampleness”, Izv. Math., 81:4 (2017), 827–887
Citation in format AMSBIB
\Bibitem{Sho17}
\by V.~V.~Shokurov
\paper A criterion for semiampleness
\jour Izv. Math.
\yr 2017
\vol 81
\issue 4
\pages 827--887
\mathnet{http://mi.mathnet.ru//eng/im8438}
\crossref{https://doi.org/10.1070/IM8438}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3682787}
\zmath{https://zbmath.org/?q=an:1390.14031}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..827S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000411425600006}
\elib{https://elibrary.ru/item.asp?id=30357747}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85029695578}
Linking options:
  • https://www.mathnet.ru/eng/im8438
  • https://doi.org/10.1070/IM8438
  • https://www.mathnet.ru/eng/im/v81/i4/p167
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024