Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 2, Pages 316–328
DOI: https://doi.org/10.1070/IM8382
(Mi im8382)
 

This article is cited in 3 scientific papers (total in 3 papers)

Fundamental aspects of vector-valued Banach limits

F. J. Garcia-Pacheco, F. J. Perez-Fernandez

University of Cadiz, Spain
References:
Abstract: This paper is divided into four parts. In the first we study the existence of vector-valued Banach limits and show that a real Banach space with a monotone Schauder basis admits vector-valued Banach limits if and only if it is $1$-complemented in its bidual. In the second we prove two vector-valued versions of Lorentz' intrinsic characterization of almost convergence. In the third we show that the unit sphere in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$ cannot be obtained via compositions of surjective linear isometries with vector-valued Banach limits. In the final part we show that if $X$ enjoys the Krein–Milman property, then the set of vector-valued Banach limits is a face of the unit ball in the space of all continuous linear operators from $\ell_\infty(X)$ to $X$ which are invariant under the shift operator on $\ell_\infty(X)$.
Keywords: Banach limit, almost convergence, group of isometries, extremal structure.
Received: 06.04.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 2, Pages 33–46
DOI: https://doi.org/10.4213/im8382
Bibliographic databases:
Document Type: Article
UDC: 517.521
MSC: 40J05, 46B15, 46B25
Language: English
Original paper language: Russian
Citation: F. J. Garcia-Pacheco, F. J. Perez-Fernandez, “Fundamental aspects of vector-valued Banach limits”, Izv. RAN. Ser. Mat., 80:2 (2016), 33–46; Izv. Math., 80:2 (2016), 316–328
Citation in format AMSBIB
\Bibitem{GarPer16}
\by F.~J.~Garcia-Pacheco, F.~J.~Perez-Fernandez
\paper Fundamental aspects of vector-valued Banach limits
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 2
\pages 33--46
\mathnet{http://mi.mathnet.ru/im8382}
\crossref{https://doi.org/10.4213/im8382}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507377}
\zmath{https://zbmath.org/?q=an:06621171}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..316G}
\elib{https://elibrary.ru/item.asp?id=25707537}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 2
\pages 316--328
\crossref{https://doi.org/10.1070/IM8382}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378090300003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977645379}
Linking options:
  • https://www.mathnet.ru/eng/im8382
  • https://doi.org/10.1070/IM8382
  • https://www.mathnet.ru/eng/im/v80/i2/p33
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:436
    Russian version PDF:56
    English version PDF:18
    References:69
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024