Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 1, Pages 24–49
DOI: https://doi.org/10.1070/IM8343
(Mi im8343)
 

This article is cited in 9 scientific papers (total in 9 papers)

Proof of the gamma conjecture for Fano 3-folds of Picard rank 1

V. V. Golysheva, D. Zagierbc

a Institute for Information Trnsmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Max Planck Institute for Mathematics
c International Centre for Theoretical Physics
References:
Abstract: We verify the (first) gamma conjecture, which relates the gamma class of a Fano variety to the asymptotics at infinity of the Frobenius solutions of its associated quantum differential equation, for all 17 of the deformation classes of Fano 3-folds of rank 1. This involves computing the corresponding limits (‘Frobenius limits’) for the Picard–Fuchs differential equations of Apéry type associated by mirror symmetry with the Fano families, and is achieved using two methods, one combinatorial and the other using the modular properties of the differential equations. The gamma conjecture for Fano 3-folds always contains a rational multiple of the number $\zeta(3)$. We present numerical evidence suggesting that higher Frobenius limits of Apéry-like differential equations may be related to multiple zeta values.
Keywords: gamma class, gamma conjecture, Picard–Fuchs equation, Fano 3-fold.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The work of the first author was supported by the Russian Science Foundation under grant no. 14-50-00150 at the Institute for Information Transmission Problems.
Received: 25.01.2015
Revised: 09.06.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 1, Pages 27–54
DOI: https://doi.org/10.4213/im8343
Bibliographic databases:
Document Type: Article
UDC: 512.776+515.178.1+517.926.4
Language: English
Original paper language: Russian
Citation: V. V. Golyshev, D. Zagier, “Proof of the gamma conjecture for Fano 3-folds of Picard rank 1”, Izv. RAN. Ser. Mat., 80:1 (2016), 27–54; Izv. Math., 80:1 (2016), 24–49
Citation in format AMSBIB
\Bibitem{GolZag16}
\by V.~V.~Golyshev, D.~Zagier
\paper Proof of the gamma conjecture for Fano 3-folds of Picard rank~1
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 1
\pages 27--54
\mathnet{http://mi.mathnet.ru/im8343}
\crossref{https://doi.org/10.4213/im8343}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3462676}
\zmath{https://zbmath.org/?q=an:06589635}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80...24G}
\elib{https://elibrary.ru/item.asp?id=25707523}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 1
\pages 24--49
\crossref{https://doi.org/10.1070/IM8343}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000375460600002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84969174901}
Linking options:
  • https://www.mathnet.ru/eng/im8343
  • https://doi.org/10.1070/IM8343
  • https://www.mathnet.ru/eng/im/v80/i1/p27
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:743
    Russian version PDF:225
    English version PDF:26
    References:101
    First page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024