Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2017, Volume 81, Issue 1, Pages 199–236
DOI: https://doi.org/10.1070/IM8286
(Mi im8286)
 

This article is cited in 13 scientific papers (total in 13 papers)

Homogenization of spectral problems with singular perturbation of the Steklov condition

A. G. Chechkina

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider spectral problems with Dirichlet- and Steklov-type conditions on alternating small pieces of the boundary. We study the behaviour of the eigenfunctions of such problems as the small parameter (describing the size of the boundary microstructure) tends to zero. Using general methods of Oleinik, Yosifian and Shamaev, we give bounds for the deviation of these eigenfunctions from those of the limiting problem in various cases.
Keywords: spectral problem, Steklov problem, homogenization, asymptotics.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 14.W02.16.7461-НШ
This paper was written with the partial financial support of the President's programme ‘Support of Leading Scientific Schools of Russia’ (grant no. 14.W02.16.7461-NSh).
Received: 18.08.2014
Revised: 18.10.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2017, Volume 81, Issue 1, Pages 203–240
DOI: https://doi.org/10.4213/im8286
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Original paper language: Russian
Citation: A. G. Chechkina, “Homogenization of spectral problems with singular perturbation of the Steklov condition”, Izv. RAN. Ser. Mat., 81:1 (2017), 203–240; Izv. Math., 81:1 (2017), 199–236
Citation in format AMSBIB
\Bibitem{Che17}
\by A.~G.~Chechkina
\paper Homogenization of spectral problems with singular perturbation of the Steklov condition
\jour Izv. RAN. Ser. Mat.
\yr 2017
\vol 81
\issue 1
\pages 203--240
\mathnet{http://mi.mathnet.ru/im8286}
\crossref{https://doi.org/10.4213/im8286}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3608729}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017IzMat..81..199C}
\elib{https://elibrary.ru/item.asp?id=28172119}
\transl
\jour Izv. Math.
\yr 2017
\vol 81
\issue 1
\pages 199--236
\crossref{https://doi.org/10.1070/IM8286}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397064700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85017029933}
Linking options:
  • https://www.mathnet.ru/eng/im8286
  • https://doi.org/10.1070/IM8286
  • https://www.mathnet.ru/eng/im/v81/i1/p203
  • This publication is cited in the following 13 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:538
    Russian version PDF:65
    English version PDF:25
    References:69
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024