Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 5, Pages 1043–1050
DOI: https://doi.org/10.1070/IM2015v079n05ABEH002770
(Mi im8282)
 

The $K(\pi,1)$-property for smooth marked curves over finite fields

Ph. Lebacquea, A. Schmidtb

a Laboratoire de Mathématiques, Université de Franche-Comté, Besançon
b Universität Heidelberg, Mathematisches Institut
References:
Abstract: In the case of smooth marked curves $(X,T)$ over finite fields of characteristic $p$, we study the $K(\pi,1)$-property for $p$. We prove that $(X,T)$ has the $K(\pi,1)$-property if $X$ is affine, and give positive and negative examples in the case when $X$ is proper. We also consider the case of unmarked proper curves over a finite field of characteristic different from $p$.
Keywords: Galois cohomology, étale cohomology, restricted ramification.
Received: 24.07.2014
Revised: 13.01.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2015, Volume 79, Issue 5, Pages 193–200
DOI: https://doi.org/10.4213/im8282
Bibliographic databases:
Document Type: Article
UDC: 511.236+511.238.2+512.737
MSC: 11R34, 11R37, 14F20
Language: English
Original paper language: Russian
Citation: Ph. Lebacque, A. Schmidt, “The $K(\pi,1)$-property for smooth marked curves over finite fields”, Izv. Math., 79:5 (2015), 1043–1050
Citation in format AMSBIB
\Bibitem{LebSch15}
\by Ph.~Lebacque, A.~Schmidt
\paper The $K(\pi,1)$-property for smooth marked curves over finite fields
\jour Izv. Math.
\yr 2015
\vol 79
\issue 5
\pages 1043--1050
\mathnet{http://mi.mathnet.ru//eng/im8282}
\crossref{https://doi.org/10.1070/IM2015v079n05ABEH002770}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438459}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79.1043L}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367372500007}
\elib{https://elibrary.ru/item.asp?id=24849995}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948402980}
Linking options:
  • https://www.mathnet.ru/eng/im8282
  • https://doi.org/10.1070/IM2015v079n05ABEH002770
  • https://www.mathnet.ru/eng/im/v79/i5/p193
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:308
    Russian version PDF:116
    English version PDF:6
    References:43
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024