|
The $K(\pi,1)$-property for smooth marked curves over finite fields
Ph. Lebacquea, A. Schmidtb a Laboratoire de Mathématiques, Université de Franche-Comté, Besançon
b Universität Heidelberg, Mathematisches Institut
Abstract:
In the case of smooth marked curves $(X,T)$ over finite fields
of characteristic $p$, we study the $K(\pi,1)$-property for $p$.
We prove that $(X,T)$ has the $K(\pi,1)$-property if $X$ is affine,
and give positive and negative examples in the case when $X$ is
proper. We also consider the case of unmarked proper curves over
a finite field of characteristic different from $p$.
Keywords:
Galois cohomology, étale cohomology, restricted ramification.
Received: 24.07.2014 Revised: 13.01.2015
Citation:
Ph. Lebacque, A. Schmidt, “The $K(\pi,1)$-property for smooth marked curves over finite fields”, Izv. Math., 79:5 (2015), 1043–1050
Linking options:
https://www.mathnet.ru/eng/im8282https://doi.org/10.1070/IM2015v079n05ABEH002770 https://www.mathnet.ru/eng/im/v79/i5/p193
|
Statistics & downloads: |
Abstract page: | 308 | Russian version PDF: | 116 | English version PDF: | 6 | References: | 43 | First page: | 16 |
|