Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 3, Pages 623–632
DOI: https://doi.org/10.1070/IM8272
(Mi im8272)
 

This article is cited in 2 scientific papers (total in 2 papers)

Universal theory of a free polynilpotent group

E. I. Timoshenko

Novosibirsk State Technical University
References:
Abstract: We prove that a free group of rank $\geqslant2$ in an arbitrary polynilpotent variety $\mathfrak N_{c_1}\mathfrak N_{c_2}\dots\mathfrak N_{c_s}$, $s\geqslant2$, $c_i\geqslant1$, $c_s\geqslant2$, has undecidable universal theory.
Keywords: universal theory, variety of groups, soluble group, nilpotent group, polynilpotent group.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-01485
Ministry of Education and Science of the Russian Federation 14.В37.21.0359
This work was supported by the Russian Foundation for Basic Research (grant no. 15-01-01485) and by the Ministry of Education and Science of the Russian Federation (project no. 14.V37.21.0359).
Received: 02.07.2014
Revised: 11.01.2015
Bibliographic databases:
Document Type: Article
UDC: 512.54.05
MSC: Primary 10F10; Secondary 03B25
Language: English
Original paper language: Russian
Citation: E. I. Timoshenko, “Universal theory of a free polynilpotent group”, Izv. Math., 80:3 (2016), 623–632
Citation in format AMSBIB
\Bibitem{Tim16}
\by E.~I.~Timoshenko
\paper Universal theory of a~free polynilpotent group
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 623--632
\mathnet{http://mi.mathnet.ru//eng/im8272}
\crossref{https://doi.org/10.1070/IM8272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507392}
\zmath{https://zbmath.org/?q=an:06629501}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..623T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384880300009}
\elib{https://elibrary.ru/item.asp?id=26414232}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987668284}
Linking options:
  • https://www.mathnet.ru/eng/im8272
  • https://doi.org/10.1070/IM8272
  • https://www.mathnet.ru/eng/im/v80/i3/p173
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:402
    Russian version PDF:50
    English version PDF:14
    References:62
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024