Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 1, Pages 60–73
DOI: https://doi.org/10.1070/IM2015v079n01ABEH002734
(Mi im8195)
 

This article is cited in 6 scientific papers (total in 6 papers)

A strengthening of Mahler's transference theorem

O. N. German, K. G. Evdokimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We obtain new transference theorems that improve some classical theorems of Mahler. Our results are stated in terms of consecutive minima of pseudo-compound parallelepipeds.
Keywords: transference principle, consecutive minima, pseudo-compound parallelepipeds, dual lattices.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation MK-5016.2012.1
Russian Foundation for Basic Research 12-01-00681
12-01-31106
12-01-33080
Dynasty Foundation
This paper was written with the partial support of the President's Programme (grant no. MK-5016.2012.1), RFBR (grants nos. 12-01-00681, 12-01-31106, 12-01-33080) and the "Dynasty" foundation.
Received: 10.12.2013
Bibliographic databases:
Document Type: Article
UDC: 511.4
Language: English
Original paper language: Russian
Citation: O. N. German, K. G. Evdokimov, “A strengthening of Mahler's transference theorem”, Izv. Math., 79:1 (2015), 60–73
Citation in format AMSBIB
\Bibitem{GerEvd15}
\by O.~N.~German, K.~G.~Evdokimov
\paper A strengthening of Mahler's transference theorem
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 60--73
\mathnet{http://mi.mathnet.ru//eng/im8195}
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002734}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352582}
\zmath{https://zbmath.org/?q=an:06428105}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79...60G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350754500004}
\elib{https://elibrary.ru/item.asp?id=23421414}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924328952}
Linking options:
  • https://www.mathnet.ru/eng/im8195
  • https://doi.org/10.1070/IM2015v079n01ABEH002734
  • https://www.mathnet.ru/eng/im/v79/i1/p63
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:587
    Russian version PDF:243
    English version PDF:22
    References:76
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024