Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 6, Pages 1138–1157
DOI: https://doi.org/10.1070/IM2014v078n06ABEH002724
(Mi im8182)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the best methods for recovering derivatives in Sobolev classes

G. G. Magaril-Il'yaevab, K. Yu. Osipenkoacb

a M. V. Lomonosov Moscow State University
b A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow
c Moscow State Aviation Technological University, Moscow
References:
Abstract: We construct the best (optimal) methods for recovering derivatives of functions in generalized Sobolev classes of functions on $\mathbb R^d$ provided that for every such function we know (exactly or approximately) its Fourier transform on an arbitrary measurable set $A\subset\mathbb R^d$. In both cases we construct families of optimal methods. These methods use only part of the information about the Fourier transform, and this part is subject to some filtration. We consider the problem of finding the best set for the recovery of a given derivative among all sets of a fixed measure.
Keywords: optimal recovery, Sobolev class, extremal problem, Fourier transform.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-12447
14-01-00456
Received: 25.10.2013
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 6, Pages 83–102
DOI: https://doi.org/10.4213/im8182
Bibliographic databases:
Document Type: Article
UDC: 517.984.64
Language: English
Original paper language: Russian
Citation: G. G. Magaril-Il'yaev, K. Yu. Osipenko, “On the best methods for recovering derivatives in Sobolev classes”, Izv. RAN. Ser. Mat., 78:6 (2014), 83–102; Izv. Math., 78:6 (2014), 1138–1157
Citation in format AMSBIB
\Bibitem{MagOsi14}
\by G.~G.~Magaril-Il'yaev, K.~Yu.~Osipenko
\paper On the best methods for recovering derivatives in Sobolev classes
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 6
\pages 83--102
\mathnet{http://mi.mathnet.ru/im8182}
\crossref{https://doi.org/10.4213/im8182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309414}
\zmath{https://zbmath.org/?q=an:06399041}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1138M}
\elib{https://elibrary.ru/item.asp?id=22834339}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 6
\pages 1138--1157
\crossref{https://doi.org/10.1070/IM2014v078n06ABEH002724}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346821600005}
\elib{https://elibrary.ru/item.asp?id=24021224}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919650189}
Linking options:
  • https://www.mathnet.ru/eng/im8182
  • https://doi.org/10.1070/IM2014v078n06ABEH002724
  • https://www.mathnet.ru/eng/im/v78/i6/p83
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:608
    Russian version PDF:235
    English version PDF:24
    References:73
    First page:47
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024