Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 4, Pages 641–655
DOI: https://doi.org/10.1070/IM2014v078n04ABEH002702
(Mi im8128)
 

This article is cited in 25 scientific papers (total in 25 papers)

Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces

A. R. Alimov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We prove that every boundedly compact $\operatorname{m}$-connected (Menger-connected) set is monotone path-connected and is a sun in a broad class of Banach spaces (in particular, in separable spaces). We show that the intersection of a boundedly compact monotone path-connected ($\operatorname{m}$-connected) set with a closed ball is cell-like (of trivial shape) and, in particular, acyclic (contractible in the finite-dimensional case) and is a sun. We also prove that every boundedly weakly compact $\operatorname{m}$-connected set is monotone path-connected. In passing, we extend the Rainwater–Simons weak convergence theorem to the case of convergence with respect to the associated norm (in the sense of Brown).
Keywords: sun, acyclic set, cell-like set, monotone path-connected set, Menger connectedness, $d$-convexity, Menger convexity, Rainwater–Simons theorem.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00022
Received: 15.05.2013
Revised: 18.10.2013
Bibliographic databases:
Document Type: Article
MSC: Primary 41A65; Secondary 52A01
Language: English
Original paper language: Russian
Citation: A. R. Alimov, “Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces”, Izv. Math., 78:4 (2014), 641–655
Citation in format AMSBIB
\Bibitem{Ali14}
\by A.~R.~Alimov
\paper Monotone path-connectedness and solarity of Menger-connected sets in Banach spaces
\jour Izv. Math.
\yr 2014
\vol 78
\issue 4
\pages 641--655
\mathnet{http://mi.mathnet.ru//eng/im8128}
\crossref{https://doi.org/10.1070/IM2014v078n04ABEH002702}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288400}
\zmath{https://zbmath.org/?q=an:1303.41018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..641A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454600001}
\elib{https://elibrary.ru/item.asp?id=21826426}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907303606}
Linking options:
  • https://www.mathnet.ru/eng/im8128
  • https://doi.org/10.1070/IM2014v078n04ABEH002702
  • https://www.mathnet.ru/eng/im/v78/i4/p3
  • This publication is cited in the following 25 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:829
    Russian version PDF:230
    English version PDF:28
    References:74
    First page:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024