Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 2, Pages 403–413
DOI: https://doi.org/10.1070/IM1995v044n02ABEH001604
(Mi im810)
 

This article is cited in 11 scientific papers (total in 11 papers)

On orbit connectedness, orbit convexity and envelopes of holomorphy

Xiang-Yu Zhouab

a Steklov Math. Institute, Academy of Sciences, Moscow, Russian
b Institute of math., Academia Sinica, Beijing, P.R. China
References:
Abstract: We are concerned with the univalence and discription of the envelope of holomorphy $E(D)$ for a domain $D$ having a compact Lie group action. Our main result is the following:
Let $X$ be a holomorphic Stein $K^C$-manifold, $D\subset X$ a $K$-invariant orbit connected domain. Then $E(D)$ is schlicht and orbit convex if and only if $E(K^C\cdot D)$ is schlicht. Moreover, in this case, $E(K^C\cdot D)=K^C\cdot e(d)$.
Received: 18.01.1992
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1994, Volume 58, Issue 2, Pages 196–205
Bibliographic databases:
UDC: 517.55
MSC: 32D10, 32A07
Language: English
Original paper language: English
Citation: Xiang-Yu Zhou, “On orbit connectedness, orbit convexity and envelopes of holomorphy”, Izv. RAN. Ser. Mat., 58:2 (1994), 196–205; Russian Acad. Sci. Izv. Math., 44:2 (1995), 403–413
Citation in format AMSBIB
\Bibitem{Zho94}
\by Xiang-Yu Zhou
\paper On~orbit connectedness, orbit convexity and envelopes of holomorphy
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 2
\pages 196--205
\mathnet{http://mi.mathnet.ru/im810}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1275909}
\zmath{https://zbmath.org/?q=an:0835.32006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..403Z}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 2
\pages 403--413
\crossref{https://doi.org/10.1070/IM1995v044n02ABEH001604}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RB41200011}
Linking options:
  • https://www.mathnet.ru/eng/im810
  • https://doi.org/10.1070/IM1995v044n02ABEH001604
  • https://www.mathnet.ru/eng/im/v58/i2/p196
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:585
    Russian version PDF:145
    English version PDF:12
    References:49
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024