Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 4, Pages 651–674
DOI: https://doi.org/10.1070/IM2013v077n04ABEH002654
(Mi im8024)
 

This article is cited in 3 scientific papers (total in 3 papers)

Operations on $t$-structures and perverse coherent sheaves

A. I. Bondalab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b Institute for the Physics and Mathematics of the Universe, University of Tokyo
References:
Abstract: We introduce the notions of consistent pairs and consistent chains of $t$-structures and prove that two consistent chains of $t$-structures generate a distributive lattice. The technique developed is then applied to the pairs of chains obtained from the standard $t$-structure on the derived category of coherent sheaves and the dual $t$-structure by means of the shift functor. This yields a family of $t$-structures whose hearts are known as perverse coherent sheaves.
Keywords: derived categories of coherent sheaves, perverse sheaves, $t$-structures.
Received: 02.07.2012
Revised: 07.10.2012
Bibliographic databases:
Document Type: Article
UDC: 512.73+512.66
MSC: 14F05, 18E30
Language: English
Original paper language: Russian
Citation: A. I. Bondal, “Operations on $t$-structures and perverse coherent sheaves”, Izv. Math., 77:4 (2013), 651–674
Citation in format AMSBIB
\Bibitem{Bon13}
\by A.~I.~Bondal
\paper Operations on $t$-structures and perverse coherent sheaves
\jour Izv. Math.
\yr 2013
\vol 77
\issue 4
\pages 651--674
\mathnet{http://mi.mathnet.ru//eng/im8024}
\crossref{https://doi.org/10.1070/IM2013v077n04ABEH002654}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135695}
\zmath{https://zbmath.org/?q=an:06216122}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..651B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323747900001}
\elib{https://elibrary.ru/item.asp?id=20425249}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884776283}
Linking options:
  • https://www.mathnet.ru/eng/im8024
  • https://doi.org/10.1070/IM2013v077n04ABEH002654
  • https://www.mathnet.ru/eng/im/v77/i4/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:654
    Russian version PDF:236
    English version PDF:22
    References:77
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024