Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 5, Pages 954–997
DOI: https://doi.org/10.1070/IM2013v077n05ABEH002666
(Mi im8016)
 

This article is cited in 14 scientific papers (total in 14 papers)

Kählerian K3 surfaces and Niemeier lattices. I

V. V. Nikulinab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b Department of Mathematical Sciences, University of Liverpool
References:
Abstract: Using the results obtained in [1], Remark 1.14.7, we clarify the relation between Kählerian $\mathrm{K3}$ surfaces and Niemeier lattices. We emphasize that all 24 Niemeier lattices are important in the description of $\mathrm{K3}$ surfaces, not only the one related to the Mathieu group.
Keywords: $\mathrm{K3}$ surface, Kählerian surface, automorphism group, integer quadratic form.
Received: 25.06.2012
Revised: 26.11.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2013, Volume 77, Issue 5, Pages 109–154
DOI: https://doi.org/10.4213/im8016
Bibliographic databases:
Document Type: Article
UDC: 512.774.4+512.774.2+512.542+512.647.2
PACS: 02.10.De, 02.40.Tt
MSC: 14J28, 11H56
Language: English
Original paper language: Russian
Citation: V. V. Nikulin, “Kählerian K3 surfaces and Niemeier lattices. I”, Izv. RAN. Ser. Mat., 77:5 (2013), 109–154; Izv. Math., 77:5 (2013), 954–997
Citation in format AMSBIB
\Bibitem{Nik13}
\by V.~V.~Nikulin
\paper K\"ahlerian K3 surfaces and Niemeier lattices.~I
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 5
\pages 109--154
\mathnet{http://mi.mathnet.ru/im8016}
\crossref{https://doi.org/10.4213/im8016}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3137197}
\zmath{https://zbmath.org/?q=an:1281.14032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..954N}
\elib{https://elibrary.ru/item.asp?id=20359204}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 5
\pages 954--997
\crossref{https://doi.org/10.1070/IM2013v077n05ABEH002666}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000326377700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84888112721}
Linking options:
  • https://www.mathnet.ru/eng/im8016
  • https://doi.org/10.1070/IM2013v077n05ABEH002666
  • https://www.mathnet.ru/eng/im/v77/i5/p109
  • This publication is cited in the following 14 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:633
    Russian version PDF:187
    English version PDF:14
    References:42
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024