Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 6, Pages 1067–1104
DOI: https://doi.org/10.1070/IM2013v077n06ABEH002670
(Mi im8005)
 

This article is cited in 6 scientific papers (total in 6 papers)

Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras

V. V. Bavula

The University of Sheffield
References:
Abstract: We make a detailed study of the Lie algebras $\mathfrak{u}_n$, $n\geqslant 2$, of triangular polynomial derivations, their injective limit $\mathfrak{u}_\infty$, and their completion $\widehat{\mathfrak{u}}_\infty$. We classify the ideals of $\mathfrak{u}_n$ (all of which are characteristic ideals) and use this classification to give an explicit criterion for Lie factor algebras of $\mathfrak{u}_n$ and $\mathfrak{u}_m$ to be isomorphic. We introduce two new dimensions for (Lie) algebras and their modules: the central dimension $\operatorname{c.dim}$ and the uniserial dimension $\operatorname{u.dim}$, and show that $\operatorname{c.dim}(\mathfrak{u}_n)=\operatorname{u.dim}(\mathfrak{u}_n) =\omega^{n-1}+\omega^{n-2}+\dots+\omega +1$ for all $n\geqslant 2$, where $\omega$ is the first infinite ordinal. Similar results are proved for the Lie algebras $\mathfrak{u}_\infty$ and $\widehat{\mathfrak{u}}_\infty$. In particular, $\operatorname{u.dim}(\mathfrak{u}_\infty)=\omega^\omega$ and $\operatorname{c.dim}(\mathfrak{u}_\infty)=0$.
Keywords: Lie algebra, triangular polynomial derivations, automorphism, isomorphism problem, the derived series and lower central series, locally nilpotent derivations, locally nilpotent and locally finite-dimensional Lie algebras.
Received: 05.06.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2013, Volume 77, Issue 6, Pages 3–44
DOI: https://doi.org/10.4213/im8005
Bibliographic databases:
Document Type: Article
UDC: 512.81
Language: English
Original paper language: Russian
Citation: V. V. Bavula, “Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras”, Izv. RAN. Ser. Mat., 77:6 (2013), 3–44; Izv. Math., 77:6 (2013), 1067–1104
Citation in format AMSBIB
\Bibitem{Bav13}
\by V.~V.~Bavula
\paper Lie algebras of triangular polynomial derivations and an isomorphism criterion for their Lie factor algebras
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 6
\pages 3--44
\mathnet{http://mi.mathnet.ru/im8005}
\crossref{https://doi.org/10.4213/im8005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3184106}
\zmath{https://zbmath.org/?q=an:1286.17022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77.1067B}
\elib{https://elibrary.ru/item.asp?id=21276249}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 6
\pages 1067--1104
\crossref{https://doi.org/10.1070/IM2013v077n06ABEH002670}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000329032100001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84891122588}
Linking options:
  • https://www.mathnet.ru/eng/im8005
  • https://doi.org/10.1070/IM2013v077n06ABEH002670
  • https://www.mathnet.ru/eng/im/v77/i6/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:653
    Russian version PDF:150
    English version PDF:17
    References:47
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024