Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 5, Pages 907–921
DOI: https://doi.org/10.1070/IM2012v076n05ABEH002609
(Mi im8001)
 

This article is cited in 14 scientific papers (total in 14 papers)

Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space

N. V. Denisovaa, V. V. Kozlovb, D. V. Treschevb

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: We consider problems related to the well-known conjecture on the degrees of irreducible polynomial integrals of a reversible Hamiltonian system with two degrees of freedom and toral position space. The main object of study is a special system arising in the analysis of irreducible polynomial integrals of degree 4. In a particular case we have the problem of the motion of two interacting particles on a circle in given potential fields. We prove that if the three potentials are smooth non-constant functions, then this problem has no non-trivial polynomial integrals of arbitrarily high degree. We prove the conjecture completely for systems with a polynomial first integral of degree 4 in the momenta.
Keywords: irreducible integrals, systems with impacts, spectrum of a potential.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00648-а
11-01-12075-офи-м
Ministry of Education and Science of the Russian Federation 11.G34.31.0054
11.G34.31.0039
Received: 25.04.2012
Bibliographic databases:
Document Type: Article
UDC: 517.9+531.01
MSC: 37J15, 70F05, 70H07
Language: English
Original paper language: Russian
Citation: N. V. Denisova, V. V. Kozlov, D. V. Treschev, “Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space”, Izv. Math., 76:5 (2012), 907–921
Citation in format AMSBIB
\Bibitem{DenKozTre12}
\by N.~V.~Denisova, V.~V.~Kozlov, D.~V.~Treschev
\paper Remarks on polynomial integrals of higher degrees for reversible systems with toral configuration space
\jour Izv. Math.
\yr 2012
\vol 76
\issue 5
\pages 907--921
\mathnet{http://mi.mathnet.ru/eng/im8001}
\crossref{https://doi.org/10.1070/IM2012v076n05ABEH002609}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3024863}
\zmath{https://zbmath.org/?q=an:1261.37023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000310548800003}
\elib{https://elibrary.ru/item.asp?id=20359147}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84868136920}
Linking options:
  • https://www.mathnet.ru/eng/im8001
  • https://doi.org/10.1070/IM2012v076n05ABEH002609
  • https://www.mathnet.ru/eng/im/v76/i5/p57
  • This publication is cited in the following 14 articles:
    1. S. V. Agapov, “High-degree polynomial integrals of a natural system on the two-dimensional torus”, Siberian Math. J., 64:2 (2023), 261–268  mathnet  crossref  crossref  mathscinet
    2. V. V. Kozlov, “Discrete symmetries of equations of dynamics with polynomial integrals of higher degrees”, Izv. Math., 87:5 (2023), 972–986  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. S. V. Agapov, M. M. Tursunov, “O ratsionalnykh integralakh dvumernykh naturalnykh sistem”, Sib. matem. zhurn., 64:4 (2023), 665–674  mathnet  crossref
    4. S. V. Agapov, M. M. Tursunov, “On the Rational Integrals of Two-Dimensional Natural Systems”, Sib Math J, 64:4 (2023), 787  crossref
    5. Burns K., Matveev V.S., “Open Problems and Questions About Geodesics”, Ergod. Theory Dyn. Syst., 41:3 (2021), PII S0143385719000737, 641–684  crossref  mathscinet  isi
    6. N. V. Denisova, “On Momentum-Polynomial Integrals of a Reversible Hamiltonian System of a Certain Form”, Proc. Steklov Inst. Math., 310 (2020), 131–136  mathnet  crossref  crossref  mathscinet  isi  elib
    7. S. V. Agapov, “Rational integrals of a natural mechanical system on the 2-torus”, Siberian Math. J., 61:2 (2020), 199–207  mathnet  crossref  crossref  isi  elib
    8. Agapov S., Valyuzhenich A., “Polynomial Integrals of Magnetic Geodesic Flows on the 2-Torus on Several Energy Levels”, Discret. Contin. Dyn. Syst., 39:11 (2019), 6565–6583  crossref  mathscinet  isi
    9. Bolsinov A. Matveev V.S. Miranda E. Tabachnikov S., “Open Problems, Questions and Challenges in Finite-Dimensional Integrable Systems”, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 376:2131 (2018), 20170430  crossref  mathscinet  isi  scopus
    10. Ivan Yu. Polekhin, “Classical Perturbation Theory and Resonances in Some Rigid Body Systems”, Regul. Chaotic Dyn., 22:2 (2017), 136–147  mathnet  crossref  mathscinet
    11. Thierry Combot, “Rational Integrability of Trigonometric Polynomial Potentials on the Flat Torus”, Regul. Chaotic Dyn., 22:4 (2017), 386–497  mathnet  crossref
    12. Leo T. Butler, Lagrangian Mechanics, 2017  crossref
    13. I. A. Taimanov, “On first integrals of geodesic flows on a two-torus”, Proc. Steklov Inst. Math., 295 (2016), 225–242  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    14. M. Bialy, A. E. Mironov, “Integrable geodesic flows on 2-torus: Formal solutions and variational principle”, J. Geom. Phys., 87 (2015), 39–47  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:962
    Russian version PDF:237
    English version PDF:29
    References:114
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025