Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 2, Pages 207–223
DOI: https://doi.org/10.1070/IM1995v044n02ABEH001594
(Mi im800)
 

This article is cited in 26 scientific papers (total in 26 papers)

Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain

A. V. Babin
References:
Abstract: In a domain $\omega\times\mathbf R\subset\mathbf R^{n+1}$ the elliptic system
\begin{equation} \partial^2_tu+\gamma\partial_tu+a\Delta u-a_0u-f(u)=g \tag{1} \end{equation}
is considered with a Neumann boundary condition. $U_+(u_0)$ denotes the set of solutions $u(x,t)$ of this system defined for $t\geqslant 0$, equal to $u_0$ for $t=0$, and bounded in $L_2(\omega)$ uniformly for $t\geqslant 0$.
In the space $H^{3/2}$ of initial data $u_0$ there arises the semigroup $\{S_t\}$, $S_tu_0=\{\upsilon\colon\upsilon=u(t),\ u\in U_+(u_0)\}$, wherein to the point $u_0$ there is assigned the set $S_tu_0$, i.e., $S_t$ is a multivalued mapping. In the paper it is proved that $\{S_t\}$ has a global attractor $\mathfrak A$. A theorem is proved that
$$ \mathfrak A=\{\upsilon\colon\upsilon=u(t),\ u\in V,\ t\in\mathbf R\}, $$
where $V$ is the set of solutions of the elliptic system, defined and bounded for $t\in\mathbf R$.
Received: 19.10.1992
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1994, Volume 58, Issue 2, Pages 3–18
Bibliographic databases:
UDC: 517.95
MSC: Primary 35J55; Secondary 34C35, 47D06
Language: English
Original paper language: Russian
Citation: A. V. Babin, “Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain”, Izv. RAN. Ser. Mat., 58:2 (1994), 3–18; Russian Acad. Sci. Izv. Math., 44:2 (1995), 207–223
Citation in format AMSBIB
\Bibitem{Bab94}
\by A.~V.~Babin
\paper Attractor of the generalized semigroup generated by an elliptic equation in a cylindrical domain
\jour Izv. RAN. Ser. Mat.
\yr 1994
\vol 58
\issue 2
\pages 3--18
\mathnet{http://mi.mathnet.ru/im800}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1275899}
\zmath{https://zbmath.org/?q=an:0839.35036}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..207B}
\transl
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 2
\pages 207--223
\crossref{https://doi.org/10.1070/IM1995v044n02ABEH001594}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RB41200001}
Linking options:
  • https://www.mathnet.ru/eng/im800
  • https://doi.org/10.1070/IM1995v044n02ABEH001594
  • https://www.mathnet.ru/eng/im/v58/i2/p3
  • This publication is cited in the following 26 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:380
    Russian version PDF:104
    English version PDF:14
    References:88
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024