|
This article is cited in 7 scientific papers (total in 7 papers)
Birationally rigid complete intersections of quadrics and cubics
A. V. Pukhlikov University of Liverpool
Abstract:
We prove the birational superrigidity of generic Fano complete intersections $V$ of type $2^{k_1}\cdot3^{k_2}$ in the projective space ${\mathbb P}^{2k_1+3k_2}$ provided that $k_2\geqslant2$ and $k_1+2k_2=\dim V\geqslant12$, and of certain families of Fano complete intersections of dimensions 10 and 11.
Keywords:
Fano variety, complete intersection, birational rigidity,
maximal singularity, multiplicity.
Received: 11.05.2012 Revised: 17.09.2012
Citation:
A. V. Pukhlikov, “Birationally rigid complete intersections of quadrics and cubics”, Izv. RAN. Ser. Mat., 77:4 (2013), 161–214; Izv. Math., 77:4 (2013), 795–845
Linking options:
https://www.mathnet.ru/eng/im7999https://doi.org/10.1070/IM2013v077n04ABEH002661 https://www.mathnet.ru/eng/im/v77/i4/p161
|
Statistics & downloads: |
Abstract page: | 457 | Russian version PDF: | 181 | English version PDF: | 12 | References: | 43 | First page: | 15 |
|