Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 2, Pages 354–377
DOI: https://doi.org/10.1070/IM2013v077n02ABEH002639
(Mi im7941)
 

This article is cited in 2 scientific papers (total in 2 papers)

Moduli spaces of model surfaces with one-dimensional complex tangent

I. B. Mamai

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the moduli spaces $\mathcal{M}(n,K)$ that parametrize the set of mutually inequivalent model surfaces. We construct the spaces $\mathcal{M}(1,K)$ for $K\le13$ and prove some results on the structure of $\mathcal{M}(1,K)$ for arbitrary $K$.
Keywords: multidimensional complex analysis, CR-manifold, invariant theory.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation НШ-3476.2010.1
Vitushkin Scholarship
Received: 02.12.2011
Revised: 13.06.2012
Bibliographic databases:
Document Type: Article
UDC: 517.55+512.745.2
MSC: 32V40, 32G13, 20G20
Language: English
Original paper language: Russian
Citation: I. B. Mamai, “Moduli spaces of model surfaces with one-dimensional complex tangent”, Izv. Math., 77:2 (2013), 354–377
Citation in format AMSBIB
\Bibitem{Mam13}
\by I.~B.~Mamai
\paper Moduli spaces of model surfaces with one-dimensional complex tangent
\jour Izv. Math.
\yr 2013
\vol 77
\issue 2
\pages 354--377
\mathnet{http://mi.mathnet.ru//eng/im7941}
\crossref{https://doi.org/10.1070/IM2013v077n02ABEH002639}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3097570}
\zmath{https://zbmath.org/?q=an:06170775}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..354M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318276000006}
\elib{https://elibrary.ru/item.asp?id=20359175}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877066278}
Linking options:
  • https://www.mathnet.ru/eng/im7941
  • https://doi.org/10.1070/IM2013v077n02ABEH002639
  • https://www.mathnet.ru/eng/im/v77/i2/p139
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:571
    Russian version PDF:182
    English version PDF:9
    References:60
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024