Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 1, Pages 87–142
DOI: https://doi.org/10.1070/IM2013v077n01ABEH002630
(Mi im7804)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymptotics of eigen-oscillations of a massive elastic body with a thin baffle

S. A. Nazarovab

a Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg
b Saint-Petersburg State University
References:
Abstract: We construct asymptotics of eigenvalues and eigenvectors in the elasticity problem for an anisotropic body joined to a thin plate-baffle (of variable thickness $O(h)$, $h\ll 1$). The spectrum contains two series of eigenvalues with stable asymptotic behaviour. The first is formed by eigenvalues $O(h^2)$ corresponding to the transversal vibrations of the plate with rigidly clamped lateral surface, and the second contains eigenvalues $O(1)$ generated by the longitudinal vibrations of the plate as well as eigen-oscillations of the body without baffle. We verify the convergence theorem for the first series, estimate the errors for both series, and discuss the asymptotic correction terms and boundary layers. Similar but simpler results are obtained in the scalar problem.
Keywords: junction of a massive body and a thin plate, spectrum of an elastic body, asymptotics of eigenvalues and eigenvectors, dimension reduction.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00348
Received: 28.06.2011
Revised: 12.02.2012
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2013, Volume 77, Issue 1, Pages 91–144
DOI: https://doi.org/10.4213/im7804
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.956.328+539.3(4)
Language: English
Original paper language: Russian
Citation: S. A. Nazarov, “Asymptotics of eigen-oscillations of a massive elastic body with a thin baffle”, Izv. RAN. Ser. Mat., 77:1 (2013), 91–144; Izv. Math., 77:1 (2013), 87–142
Citation in format AMSBIB
\Bibitem{Naz13}
\by S.~A.~Nazarov
\paper Asymptotics of eigen-oscillations of a~massive elastic body with a~thin baffle
\jour Izv. RAN. Ser. Mat.
\yr 2013
\vol 77
\issue 1
\pages 91--144
\mathnet{http://mi.mathnet.ru/im7804}
\crossref{https://doi.org/10.4213/im7804}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3087088}
\zmath{https://zbmath.org/?q=an:06152571}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77...87N}
\elib{https://elibrary.ru/item.asp?id=20359166}
\transl
\jour Izv. Math.
\yr 2013
\vol 77
\issue 1
\pages 87--142
\crossref{https://doi.org/10.1070/IM2013v077n01ABEH002630}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000315467400005}
\elib{https://elibrary.ru/item.asp?id=20442842}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877049627}
Linking options:
  • https://www.mathnet.ru/eng/im7804
  • https://doi.org/10.1070/IM2013v077n01ABEH002630
  • https://www.mathnet.ru/eng/im/v77/i1/p91
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:677
    Russian version PDF:204
    English version PDF:16
    References:99
    First page:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024